Fuel storage and dispensing system

Gas separation – Combined or convertible

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C141S044000, C141S045000, C141S055000, C141S057000, C141S059000, C141S063000

Reexamination Certificate

active

06835223

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to a fuel storage and dispensing system and, more particularly, to a system which employs a storage tank, a fuel dispenser, a fuel dispensing nozzle and spout, a boot, a pressure relief chamber, a filter system, and a pump to reduce the discharge of pollutants from underground fuel storage tanks, as well as the emission of hydrocarbon vapors above ground during fueling. The system is arranged to discharge pollutant free air through an air exhaust port when the pressure within the system reaches a predetermined level. Air to be discharged is separated from fuel vapor within the filter system prior to its discharge.
In addition to the capture of pollutants that are vented from underground fuel storage tanks, the petroleum industry has increasingly made provisions for recovering fuel vapors that are displaced from a vehicle fuel tank as fuel is discharged therein. Generally, there are two types of systems designed for vapor recovery—pressure balance recovery systems and vacuum-induced vapor recovery systems.
Pressure balance systems involve the addition of a vapor return conduit system that extends from a dispenser nozzle, through a hose, to a dispenser pedestal and then through an underground conduit system to a point of disposal. Most frequently, the means of disposal is simply to return the vapors to the storage tank from which fuel is drawn to fill the fuel tank of the vehicle. As fuel is withdrawn from the storage tank in fueling a vehicle, the vapor space within the storage tank is increased. Conversely, as fuel is introduced into the fuel tank of a vehicle, vapor space is decreased to essentially an identical extent. The resultant pressure differentials cause the vapors to flow through the vapor conduit system from the nozzle back into the storage tank, thereby creating a pressure balance.
Vacuum-induced vapor recovery systems employ vapor recovery lines as well as a vacuum assist to enhance the return of displaced vapors to the storage tanks. Vacuum assist nozzles also include a vapor return passage for connection with a coaxial hose, at the opposite or hose attachment end of the nozzle. However, the nozzles employed in vacuum assist systems are not without faults. The coaxial design of the nozzle is prone to dripping once fueling is complete and the nozzle is discharged from the vehicle tank inlet pipe. Such dripping can lead to significant emission of volatile organic compounds (“VOC”) into the environment.
Accordingly, the present inventors have recognized a need for improvements in fuel, storage and dispensing system design, which is effective in reducing fugitive emissions, as well as improvements in the design of nozzles, boots, and other associated assemblies for vacuum-induced vapor recovery systems.
SUMMARY OF THE INVENTION
The present invention meets the above-mentioned needs by providing a fuel storage and dispensing system, a fuel dispensing nozzle and spout assembly, a pressure relief assembly, a vapor recovery boot, and a Venturi shut-off assembly for a fuel dispensing nozzle and spout. Although the present invention is not limited to specific advantages or functionality, it is noted that each embodiment of the instant invention is effective in reducing the emission of volatile organic compounds into the environment both during fueling, as well as during storage of gasoline.
In accordance with one embodiment of the present invention, a fuel storage and dispensing system is provided comprising at least one storage tank, an air exhaust port, at least one fuel dispenser, a fuel dispensing nozzle, a rigid, fuel dispensing spout, a boot, a pressure relief chamber, a filter system, and at least one pump. The storage tank includes at least one fluid vent port and at least one pollutant return port. At least one fuel delivery port and at least one vapor return port are configured to couple the storage tank to the fuel dispenser.
The fuel dispenser comprises a vapor assist hose, a meter, and a dispenser coupling. The vapor assist hose defines a fuel dispensing passage and a vapor recovery passage, wherein the vapor assist hose extends from a fuel input end to a fuel dispensing end. The meter is configured to provide an indication of an amount of fuel dispensed through the vapor assist hose. The dispenser coupling is configured to place the fuel dispensing passage in communication with the fuel delivery port and the vapor recovery passage in communication with the vapor return port.
The fuel dispensing nozzle defines a hose attachment end and a spout attachment end. The hose attachment end is coupled with the fuel dispensing end of the vapor assist hose. The spout attachment end further defines a vapor return opening, and the vapor recovery passage of the vapor assist hose is in communication with the vapor return opening. The vapor return opening defined by the spout attachment end of the fuel dispensing nozzle can be positioned about an outer periphery of the rigid, fuel dispensing spout.
The rigid, fuel dispensing spout is coupled to the spout attachment end of the fuel dispensing nozzle. The fuel dispensing passage of the vapor assist hose is in communication with the rigid, fuel dispensing spout. The rigid, fuel dispensing spout further defines a non-coaxial fuel tube. The non-coaxial fuel tube can be configured to be substantially dripless.
The rigid, fuel dispensing spout can further comprise mounting hardware having an outer boundary. The mounting hardware can be configured to attach the rigid, fuel dispensing spout to the spout attachment end of the fuel dispensing nozzle. The vapor return opening can be positioned outside of the outer boundary of the mounting hardware on the spout attachment end of the fuel dispensing nozzle.
The boot defines a proximal end and a distal end. The proximal end is coupled to the spout attachment end of the fuel dispensing nozzle. The distal end is configured for communication with a surface proximate a fuel tank inlet pipe of a vehicle during fueling. The boot is positioned surrounding the rigid, fuel dispensing spout and defines an annular passage configured for receiving fuel vapor displaced from the fuel tank inlet pipe of the vehicle during fueling. The annular passage is in communication with the vapor return opening in the spout attachment end of the fuel dispensing nozzle.
The pressure relief chamber is in communication with the fuel dispensing passage of the vapor assist hose. The pressure relief chamber comprises a bleed hole and a fluid volume sufficient to enable fuel traveling within the fuel dispensing passage of the vapor assist hose to create a pressure relief vacuum within the chamber. The pressure relief vacuum has a magnitude sufficient to compensate for high temperature pressure build-up in the vapor assist hose.
The filter system comprises a filter input port coupled to the fluid vent port. The at least one pump is configured to cause fluid to pass through the filter input port. The storage tank, the filter system, and the pump are configured such that the storage tank and additional portions of the fuel storage and dispensing system operate below atmospheric pressure.
The fuel storage and dispensing system can further comprise at least one pressure sensor. The pressure sensor is configured to monitor pressure at one or more diagnostic points within the fuel storage and dispensing system. The pressure sensor can be configured to provide an indication of pressure. The indication of pressure can be greater than, less than, or equal to atmospheric pressure. The pressure sensor can be configured to provide an indication of pressure within or at one or more of the storage tank, the fluid vent port, the pollutant return port, the air exhaust port, the fuel dispenser, the vapor return port, the vapor assist hose, the vapor recovery passage, the dispenser coupling, the fuel dispensing nozzle, the pressure relief chamber, the vapor return opening, the boot, the filter system, and the pump. The pressure sensor can be coupled to a dispenser display. T

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fuel storage and dispensing system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fuel storage and dispensing system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fuel storage and dispensing system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3332278

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.