Fuel safety management system for storing, transporting, or...

Fluent material handling – with receiver or receiver coacting mea – Diverse fluid containing pressure filling systems involving... – Gas treatment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C169S026000, C169S062000

Reexamination Certificate

active

06182714

ABSTRACT:

OVERVIEW OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a safety management and control system of hydrocarbon fuel which employs inert gas, of a type which is absorbable in hydrocarbon fuel, under controllable conditions, in a ratio that exceeds 0.1 volume of gas per volume of liquid fuel, and is also of a type under other controllable conditions which is suitable for filling an ullage of flammable fuel receptacles with a combustion suppressive medium, whether such a medium is contained in fuel, or contained separately in the system in a gaseous or chilled state, and subsequently released as an inerting gas into one or more fuel receptacle ullage.
2. Background of the Invention
In copending patents, the means are described to create a variety of gas-enriched fuels—suitable for use in various types of vehicles, engines, and fuel-burning devices. The fuels are processed in any of a variety ways to absorb an optimal amount of inert gas within the fuel itself, such that the inert gas contained therein can subsequently degas within the fuel receptacles that store the fuels—and when conveyed with an optimum concentration of inert gas such as CO2 to a fuel-burning device such as an engine, can substantially reduce harmful emissions and/or improve engine combustion. Numerous techniques are disclosed in the pending patents for absorbing or retaining inert gas within the gas-enriched fuels including means for: mixing, stirring; atomizing, aspirating, pressurizing, agitating, splashing, carbonating, diffusing, convecting the gas within the fuel (gas absorption in the fuel can also be effected by establishing or maintaining an equilibrium relationship between an ullage inert gas concentration and a desired concentration of inert gas within the fuel. Conversely, many of these same techniques can be used to degas inert gas (such as CO2) from fuel. A key feature of the inert gas-enriched fuel is its capacity to degas over time and according to known or predictable conditions. Thus, one inert gas conveying means for delivering inert gas into receiving fuel receptacles is to convey gas-enriched fuel into a particular receptacle whereafter the inert gas will degas from the fuel and provide an inerting medium within the ullage of the fuel receptacle. A second inert gas conveying means of the present invention is achieved by employing one or more inert gas receptacles coupled by suitable conduit to one or more fuel receptacles and controlling the flow of inert gas (e.g. with a computer controllable pump and/or valve) to the receptacle(s) according their monitorable ullage conditions. Receptacles for storing and managing liquefied or solidified inert medium are also disclosed. The fuel safety-enhancing system of the present invention provides practicable methods to increase the safety of a variety of fuel receptacle types, such as those used in vehicles which carry or transport combustible fuels, or those used for ground-based or stationary fuel storage, are disclosed. Thus, an effective inert gas conveyance to the ullages of fuel receptacles is provided which displaces potentially flammable ullage contents with a sufficient volume of inert gas to substantially increase the fuel storage safety of contents within fuel receptacles—contents that can otherwise be comprised of flammable vapor/air mixtures.
The co-pending patents also site the carbon dioxide (CO2) absorbing characteristic of hydrocarbons such as kerosene which is the principle combustible agent in fuel for jet aircraft, and further describe the degassing process of CO2 which, when initially contained within the jet fuel, is released from the fuel into the fuel receptacle over time, according to a number of controllable and/or predictable factors, and thus replaces the ullage volume typically filled with potentially combustible fuel vapor/air mixture with the de-gassing inert gas. Since it is commonly understood that below the stoichiometric level, the combustive danger of fuel receptacles is proportional to the amount of fuel vapor/air mixture within such receptacles, it is desirable to reduce or eliminate such mixtures to an effective degree possible. An improved method for managing and controlling inert gas within flammable fuel receptacle is disclosed in the present invention and is described in detail below.
Heretofore, some systems of managing inert gas in aircraft fuel systems have been employed. For example, a limited number of aircraft have used large storage tanks to store gaseous nitrogen under high pressure that is subsequently released into the fuel tank ullage during the flight of the aircraft. However, due to the large volume capacity of the aircraft fuel tanks, the on-board nitrogen tanks—as a sole source of inert gas—did not prove to be practical. Similarly, a Dewar system approach has been employed on some cargo aircraft to store liquid nitrogen for subsequent release during the flight, but due to problems relating to thermal shock, due to the extreme cold of liquefied nitrogen the Dewar system has not proven to be an effective solution to the needs of typical commercial aircraft and the like. By contrast, some chilled inert medium such as CO2 can be stored close to a temperature range that is encountered by commercial aircraft at higher cruising altitudes (e.g. CO2 that is liquefied, or solidified). Liquid nitrogen cannot be stored in this temperature range and consequently additional handling is required to prevent thermal shock to fuel systems attempting to incorporate the considerably colder liquid nitrogen. Another safety-enhancing method employed on vehicles such as jet aircraft are on-board inert gas generators that are expensive and need improved reliability.
Attempts to overcome the aforenoted problems have been made in the several patents which employ methods to remove or ‘scrub’ oxygen from either: gas mixture having a large concentration of nitrogen; or, from the fuel itself, in order to reduce fuel tank ullage flammability. For example, U.S. Pat. No. 4,378,920 issued to Runnels et al, discloses an inert gas generator which removes oxygen to produce a nitrogen rich gas. Similarly, U.S. Pat. No. 3,691,730 issued to Hickey et al describes a method for scrubbing dissolved oxygen from fuel. Attempts to commercialize, or to otherwise put these systems into practice have proven them to be impractical or to cumbersome, complicated and/or costly. For example, Hickey et al describe means for mixing inert gas with pumped fuel as it is received by a jet's fuel receptacle in order to remove oxygen from the fuel and thereby create an “inert fluid”. However, jet fuel is typically pumped at a rate that exceeds several hundred gallons per minute. Pumps required to remove oxygen from the fuel at such rates—particularly those considered for on-board use (i.e. on the aircraft)—would likely be very bulky and not practical for integration in the aircraft's fuel system.
By contrast, the present invention provides inert gas conveyance means which employs inert gas of a type which is readily and inexpensively mixed or absorbed into the fuel before the fuel is loaded onto a vehicle, or is stored in one or more separate gas receptacle for subsequent conveyance into one or more fuel receptacles as needed (and can readily be stored under pressure in a chilled or gaseous state). It is noted that any one or more of a variety of fuel and/or gas receptacles can be employed by the fuel safety management system of the present invention, including, storage tanks, fuel tanks, fuel bladders, Dewar systems, positive pressurized tanks, negative pressurized tanks, and so forth. Thus in one embodiment of the invention, the fuel is transferred into the desired fuel receptacle(s) and the inert gas de-gasses from the fuel into the ullage of the receptacle. Alternatively, the invention discloses the employment of a plurality of receptacles with suitable coupling and receptacle content conveyance means to provide the controllable exchange of at least one receptacle content to another receptacle, includin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fuel safety management system for storing, transporting, or... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fuel safety management system for storing, transporting, or..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fuel safety management system for storing, transporting, or... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2585607

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.