Fuel lubricity additives

Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C554S025000, C554S026000, C554S069000, C554S221000, C554S223000, C554S224000, C044S385000, C044S388000, C044S389000, C044S393000, C044S403000, C044S404000, C044S418000

Reexamination Certificate

active

06239298

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention provides a fuel lubricity additive, made by a two-step process wherein the first step is co-reacting an unsaturated base oil, predominantly from vegetable oil sources, and a compound having a diene structure and a carboxylic acid group, wherein the second step is esterifying or amidifying the free carboxylic acid group or groups with a poly-hydroxy-containing compound or poly-amine compound to form the final fuel lubricity additive useful in diesel fuels. The fuel lubricity additive formulations and compositions have further utility as dispersants.
BACKGROUND OF THE INVENTION
Beginning in 1993, all highway diesel fuel in the United States was required to have a minimum sulfur content of 0.05% (by weight). Refineries have been able to meet this standard by hydrotreating. Hydrotreating removes sulfur, nitrogen and other metal-bonding reactive sites as well as seal-swelling and lubricating aromatic compounds. However, a major drawback to the hydrotreating process used to reduce sulfur and aromatic levels is that the diesel fuel product has reduced fuel lubricity. The reduced fuel lubricity increases wear rates in many fuel injection systems, as such injections systems have been designed to utilize natural lubricating properties of traditional diesel fuels (typically containing 0.2 to 0.5% by weight sulfur or 2000-5000 ppm). This has caused a dramatic increase in fuel injection system problems manifest as under run and stalling as the most minor to injector nozzle fouling, to fuel pump failures resulting in a need to replace entire systems. This is causing fuel injection systems to be redesigned even as injection pressures have risen to the detriment of wear and mechanical performance.
Distillate petroleum hydrocarbon fractions in the kerosene/diesel fuel range have essentially no lubricity or lubricating value. The high solvent action of the fuel and the constant washing by large volumes of fuel make it impossible to maintain lubricant on pump surfaces. Thus, fuel pumps are subjected to serious wear, leading to pump failure. Fuel compositions have to be treated (formulated) to address wear, erosion and corrosion problems.
Petroleum refineries produce 50 to 60 billion gallons of diesel fuel for consumption in the United States each year. Most refineries are producing only low-sulfur diesel fuels to achieve economies of scale. This means that, even though off-road vehicles are currently exempt from the low-sulfur emission requirements, most, including tractor and other farm equipment, will be using low-sulfur diesel fuels. This will result in increased engine wear in agricultural equipment that was designed for the natural lubricating properties of diesel fuels. The EPA is in the process of developing emission standards for off-road engines which will also cause low-sulfur diesel fuels to be used.
Traditional fuel lubricity additives contain sulfur, phosphorous, zinc, nitrogen or boron. These are called ash forming or catalyst-poisoning additives. Ash forming additives are thermally activated and form sacrificial chemical bonds to metal surfaces. The additive will then “shear” from the metal surface before the metal itself, resulting in protection of the metal surface from wear. Many additives also contribute to particulate emissions during combustion. Moreover, additives can form SO
x
, NO
x
and PO
x
emissions, or emissions which can poison a catalyst used in catalytic converters, causing an increase in particulate and hydrocarbon emissions.
Therefore there is a need in the art for diesel fuel additives that impart needed lubricity properties but provide minimal ash or preferably ash-less properties for the purposes of reducing ultimate emissions characteristics. The present invention applies telomer technology to this field of art to provide an improved ashless additive to diesel fuel and kerosene that provides lubricity properties, improved combustion and improved emissions characteristics. The goal, that was achieved by this invention, was to provide a fully fuel-soluble additive molecule, which is derived from renewable sources and contains no ash or deposit-producing elements or catalyst poisons such as sulfur, phosphorous or boron. The invention describes the achievement of that goal.
SUMMARY OF THE INVENTION
The present invention provides a fuel lubricity additive compound, comprising an intermediate adduct of a first moiety reacted in a first reaction with a second moiety to form the intermediate adduct and further esterifying or amidifying the intermediate adduct with a third moiety in a molar ratio of from about 1:2 to about 2:1, wherein the first moiety is an unsaturated triglyceride plant oil or a thermal polymer thereof, wherein the second moiety is a diene or conjugated carbon-carbon double bond acid or anhydride moiety, wherein the first reaction comprises mixing the first moiety with the second moiety in a molar ratio of from about 1:2 to about 2:1 at a temperature of from about 130° C. to about 195° C. under an inert atmosphere; and wherein the third moiety is a polyhydroxy compound or a polyamino compound. Preferably, the unsaturated plant oil is selected from the group consisting of rapeseed oil, tung oil, linseed oil, soya oil, corn oil, peanut oil, canola oil, safflower oil, or combinations thereof. Preferably, the thermal polymer is selected from the group consisting of thermal (telomer) polymers of canola oil, soya oil, linseed oil, corn oil, safflower oil, peanut oil, tung oil, and combinations thereof. Preferably, the second moiety comprises unsaturated compounds having a free carboxylic acid or anhydride group. Most preferably, the second moiety is selected from the group consisting of maleic acid, maleic anhydride, sorbic acid, sorbic anhydride, tetrahydrophthalic anhydride, tetrahydrophthalic acid, salicylic acid, salicylic anhydride, acrylic acid, acrylic anhydride, C
1-10
alkyl, C
2-10
alkenyl, or C
1-10
alkoxy derivatives of the foregoing acids and anhydrides, and combinations thereof. Preferably, the polyhydroxy compound of the third moiety is selected from the group consisting of glycerol, sorbitol, hydroxyquinone, glucose, mannose, 6-carbon sugars, pentose, fructose, 5-carbon sugars, pentaerythritol, catechol, resorcinol, hydroquinone, pyrogallol, 4,4′-dihydroxybiphenyl, 2,4-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, orthohydroxybenzene, polyhydroxyaromatic compounds having one or two phenyl rings and one or two 5-6 membered aromatic rings having substituted alkyl or alkenyl side chains (C
2-10
) substituted with at least two hydroxyl groups, trimethylolpropane, pentaerythritol, dimethylolpropane, dipentaerythritol, trimethylolethane, ethyleneglycol, polypropyleneglycol, polyethylated alcohols, and combinations thereof. Preferably, the polyamino compound is selected from the group consisting of diethylenetriamine, dimethylenetriarine, dipropylnetriamine, ethyenediamine, propylenediamine, butylenediamine, butylenetriamine, triethylenetetramine, tripropylenetetramine, trimethylenetriamine, tributylenetetramine, tetraethylenepentamine, tetramethylenepentamine, tetrapropylenepentamine, tetraethylenepentamine, tetrabutylenepentamine, hexylenediamine, and combinations thereof. Preferably, the first reaction is conducted under continuous mixing. Preferably, the esterification reaction comprises reaction conditions of from about 150° C. to about 190° C. under an inert atmosphere and further comprises adding an esterification catalyst. Most preferably, the esterification catalyst is an acid catalyst. Most preferably, the esterification catalyst is selected from the group consisting of p-toluene sulfonic acid, hydrophosphorous acid, sulfuric acid, hydrochloric acid, phosphoric acid, acid-activated clays, solid acid catalysts, acidic zeolites, and combinations thereof Preferably, the amidification reaction comprises reaction conditions of from about 130° C. to about 150° C. under an inert atmosphere. Most preferably, the fuel lubricity additive compound is made from the first moiety, se

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fuel lubricity additives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fuel lubricity additives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fuel lubricity additives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2451738

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.