Fuel injector with spiral-wound spring adjustment tube

Fluid sprinkling – spraying – and diffusing – Including valve means in flow line – Reciprocating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C239S533900, C239S585200, C239S585300, C239S585400, C239S585500

Reexamination Certificate

active

06644568

ABSTRACT:

FIELD OF INVENTION
The invention relates to fuel injectors in which an injector needle valve is urged against a valve seat by a coil spring that otherwise bears against a spring-force adjustment element positioned within a complementary bore defined in the housing opposite the valve seat.
BACKGROUND OF THE INVENTION
Conventional automotive electronic fuel injectors for an internal combustion engine generally include an injector body defining an internal passage that extends between a fuel inlet and a fuel delivery nozzle. An annular electromagnetic coil assembly on the injector body encircles a portion of the passage, while an armature
eedle valve assembly disposed within the passage is biased toward a valve seat by a coil spring that is also disposed within the passage. Upon energizing the electromagnetic coil assembly, a magnetic force is generated on the armature
eedle valve assembly which operates against the action of the spring to move the assembly's needle valve away from the valve seat and thereby permit pressurized fuel to flow through the injector bore and out the injector nozzle.
In order to obtain a desired spring force biasing the armature
eedle valve assembly against the valve seat, the prior art generally positions the spring within the injector passage such that one end of the spring bears directly against the valve armature. The other end of the spring is typically seated against a shoulder defined within the passage, as by an end face of a cylindrical spring-force adjustment element or “spring adjuster” that is permanently positioned in a complementary bore defined in the injector body opposite the valve seat. The spring adjuster may comprise a solid cylindrical pin or, alternatively, may be formed of tubular stock to thereby provide a “spring adjustment tube” that is particularly useful, for example, in the case of a top-feed fuel injector wherein fuel flows through the spring adjuster toward the nozzle.
The prior art teaches several approaches for retaining or securing the spring adjuster at a desired depth/position within the bore in order to achieve a desired bias on the armature
eedle valve assembly. Under one approach, a slightly-larger-diameter cylindrical pin is pressed axially into the bore to a desired depth. The resulting interference fit between the pin and the bore serves to thereafter retain the pin at the desired location. Unfortunately, a substantial press force is required to insert the pin into the bore, thereby increasing manufacturing costs. Moreover, the bore may be damaged during the pressing operation, creating burrs or other defects on either the pin or the bore, further increasing the pressing force required for installation and making an accurate axial positioning of the pin in the bore more difficult to achieve. The radial interference between the press-fit pin and the bore may also cause undesirable distortion of the injector body.
Under another known approach, a slotted spring pin is pressed into the bore to a desired depth. Generally, a slotted spring pin is a hollow cylindrical tube formed of thin, rolled spring steel so as to have a longitudinal slot extending down its entire length. The slotted spring pin is manufactured to a controlled outside diameter slightly greater than the inlet tube of the injector. The longitudinal slot permits the slotted spring pin to be resiliently radially compressed during installation, after which the resilient spring material of the slotted spring pin applies continuous radial pressure against the bore to maintain the slotted spring pin at the desired depth. A chamfered end on the slotted spring pin is often used to facilitate radial compression during insertion, thereby reducing possible damage to the bore and lowering the required insertion force.
Unfortunately, a significant press force is still required during insertion in order to radially compress the slotted spring pin. And, because an installed slotted spring pin does not engage the bore about its entire periphery, a greater sheet thickness must be used to achieve a sufficient resilient engagement with the bore, further increasing the press force required to radially compress the slotted spring pin and insert it in the bore, as well as the likelihood of any attendant damage to, or dimensional distortion of, the bore. Additionally, unlike a solid or tubular pin, the end of the slotted spring pin does not provide a
3600
land or circumferentially-continuous shoulder about the bore against which the coil spring may bear.
Accordingly, what is needed is a spring adjuster for an electromagnetically-actuated fuel injector that exhibits a reduced insertion force while otherwise providing both a sufficient retention force within the bore, and whose longitudinal end preferably further provides a circumferentially-continuous annular surface against which the armature return spring can bear.
SUMMARY OF THE INVENTION
Under the invention, an electromagnetically-actuated fuel injector for supplying fuel to an internal combustion engine includes an injector body defining an internal passage that extends between an inlet and a fuel delivery nozzle. An annular electromagnetic coil is mounted on the injector body so as to encircle a portion of the passage, while a needle valve disposed within the passage is biased by a coil spring toward a valve seat defined within the passage proximate to the nozzle. The needle valve is movable, upon actuation of the electromagnetic coil, between a closed position in which the needle valve sealing engages the valve seat, and an open position in which the needle valve separates from the valve seat to permit fuel to flow through the nozzle.
In accordance with the invention, a spring adjustment tube is disposed within a generally-cylindrical bore defined in the housing opposite the valve seat. By way of example, in the case of a top-feed electronic fuel injector, the bore is defined by the inner diameter of an inlet tube that otherwise also defines the upper portion of the injector's internal passage. However, it will be appreciated that the invention contemplates forming a suitable bore in the injector body that does not form a part of a direct fuel flow path between, for example, an inlet defined on a side of the injector body and the nozzle. A coil return spring is disposed within the passage between the needle valve and an end face of the spring adjustment tube. The axial position of the spring adjustment tube within the inlet tube, relative to the valve seat, calibrates the return spring force applied to the needle valve.
Under the invention, the spring adjustment tube is formed from a square or, more preferably, rectangular section of relatively-thin sheet stock that is rolled to achieve a spiral-wound configuration having at least 1.5 turns, end-to-end, and preferably about 2.0 to 3.0 turns, end-to-end, when the spring adjustment tube is viewed in transverse section. Most preferably, the spring adjustment tube has about 2.25 turns, end-to-end, when viewed in transverse cross-section. The nominal outer diameter of the as-rolled spring adjustment tube is slightly greater than the nominal inner diameter of the injector's inlet tube.
In accordance with an aspect of the invention, the material properties and thickness of the relatively-thin sheet stock from which the precursor square or rectangular section is obtained, as well as the minor dimension to which a rectangular section is cut, is selected such that the rolled spring adjustment tube is both resiliently radially compressible to an outer diameter at least as small as the nominal inner diameter of the injector's inlet tube and resiliently presses against the bore upon insertion to thereby maintain the spring adjustment tube's relative position within the inlet tube.
Because the spring adjusting tube is “spiral-wound” when viewed in transverse section, with the outermost “turn” of sheet stock overlying at least part of an innermost “turn,” the required resilient bending of the sheet stock during insertion is spread over a greater “lengt

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fuel injector with spiral-wound spring adjustment tube does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fuel injector with spiral-wound spring adjustment tube, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fuel injector with spiral-wound spring adjustment tube will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3121608

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.