Fuel injector for an internal combustion engine

Internal-combustion engines – Charge forming device – Heating of combustible mixture

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S19800E, C239S136000

Reexamination Certificate

active

06779513

ABSTRACT:

FIELD
The present invention relates to fuel delivery in an internal combustion engine. More particularly, a method and apparatus according to the invention provides at least one heated capillary flow passage for vaporizing fuel supplied to an internal combustion engine.
BACKGROUND
A variety of systems have been devised to supply fine liquid fuel droplets and air to internal combustion engines. These systems either supply fuel directly into the combustion chamber (direct injection) or utilize a carburetor or fuel injector(s) to supply the mixture through an intake manifold into a combustion chamber (indirect injection). In currently employed systems, the fuel-air mixture is produced by atomizing a liquid fuel and supplying it as fine droplets into an air stream.
In conventional spark-ignited engines employing port-fuel injection, the injected fuel is vaporized by directing the liquid fuel droplets at hot components in the intake port or manifold, under normal operating conditions. The liquid fuel films on the surfaces of the hot components and is subsequently vaporized. The mixture of vaporized fuel and intake air is then drawn into the cylinder by the pressure differential created as the intake valve opens and the piston moves towards bottom dead center. To ensure a degree of control that is compatible with modern engines, this vaporizing technique is typically optimized to occur in less than one engine cycle.
Under most engine operating conditions, the temperature of the intake components is sufficient to rapidly vaporize the impinging liquid fuel droplets. However, under conditions such as cold-start and warm-up, the fuel is not vaporized through impingement on the relatively cold engine components. Instead, engine operation under these conditions is ensured by supplying excess fuel such that a is sufficient fraction evaporates through heat and mass transfer as it travels through the air prior to impinging on a cold intake component. Evaporation rate through this mechanism is a function of fuel properties, temperature, pressure, relative droplet and air velocities and droplet diameter. Of course, this approach breaks down in extreme ambient cold-starts, in which the fuel volatility is insufficient to produce vapor in ignitable concentrations with air.
In order for combustion to be chemically complete, the fuel-air mixture must be vaporized to a stoichiometric gas-phase mixture. A stoichiometric combustible mixture contains the exact quantities of air (oxygen) and fuel required for complete combustion. For gasoline, this air-fuel ratio is about 14.7:1 by weight. A fuel-air mixture that is not completely vaporized, nor stoichiometric, results in incomplete combustion and reduced thermal efficiency. The products of an ideal combustion process are water (H
2
O) and carbon dioxide (CO
2
). If combustion is incomplete, some carbon is not fully oxidized, yielding carbon monoxide (CO) and unburned hydrocarbons (HC).
The mandate to reduce air pollution has resulted in attempts to compensate for combustion inefficiencies with a multiplicity of fuel system and engine modifications. As evidenced by the prior art relating to fuel preparation and delivery systems, much effort has been directed to reducing liquid fuel droplet size, increasing system turbulence and providing sufficient heat to vaporize fuels to permit more complete combustion.
However, inefficient fuel preparation at lower engine temperatures remains a is problem which results in higher emissions, requiring after-treatment and complex control strategies. Such control strategies can include exhaust gas recirculation, variable valve timing, retarded ignition timing, reduced compression ratios, the use of catalytic converters and air injection to oxidize unburned hydrocarbons and produce an exothermic reaction benefiting catalytic converter light-off.
Over-fueling the engine during cold-start and warm-up is a significant source of unburned hydrocarbon emissions in conventional engines. Compounding the problem is the fact that the catalytic converter is also cold during this period of operation and, thus, does not reduce a significant amount of the unburned hydrocarbons that pass through the engine exhaust. As a result, the high engine-out concentrations of unburned hydrocarbons pass essentially unreacted through the catalytic converter and are emitted from the tailpipe. It has been estimated that as much as 80 percent of the total hydrocarbon emissions produced by a typical, modern passenger car occurs during the cold-start and warm-up period, in which the engine is over-fueled and the catalytic converter is essentially inactive.
Given the relatively large proportion of unburned hydrocarbons emitted during startup, this aspect of passenger car engine operation has been the focus of significant technology development efforts. Furthermore, as increasingly stringent emissions standards are enacted into legislation and consumers remain sensitive to pricing and performance, these development efforts will continue to be paramount. Such efforts to reduce start-up emissions from conventional engines generally fall into two categories: 1) reducing the warm-up time for three-way catalyst systems and 2) improving techniques for fuel vaporization. Efforts to reduce the warm-up time for three-way catalysts to date have included: retarding the ignition timing to elevate the exhaust temperature; opening the exhaust valves prematurely; electrically heating the catalyst; burner or flame heating the catalyst; and catalytically heating the catalyst. As a whole, these efforts are costly and do not address HC emissions during and immediately after cold start.
A variety of techniques have been proposed to address the issue of fuel vaporization. U.S. patents proposing fuel vaporization techniques include U.S. Pat. No. 5,195,477 issued to Hudson, Jr. et al, U.S. Pat. No. 5,331,937 issued to Clarke, U.S. Pat. No. 4,886,032 issued to Asmus, U.S. Pat. No. 4,955,351 issued to Lewis et al., U.S. Pat. No. 4,458,655 issued to Oza, U.S. Pat. No. 6,189,518 issued to Cooke, U.S. Pat. No. 5,482,023 issued to Hunt, U.S. Pat. No. 6,109,247 issued to Hunt, U.S. Pat. No. 6,067,970 issued to Awarzamani et al., U.S. Pat. No. 5,947,091 issued to Krohn et al., U.S. Pat. No. 5,758,826 issued to Nines, U.S. Pat. No. 5,836,289 issued to Thring, and U.S. Pat. No. 5,813,388 issued to Cikanek, Jr. et al.
Other fuel delivery devices proposed include U.S. Pat. No. 3,716,416, which discloses a fuel-metering device for use in a fuel cell system. The fuel cell system is intended to be self-regulating, producing power at a predetermined level. The proposed fuel metering system includes a capillary flow control device for throttling the fuel flow in response to the power output of the fuel cell, rather than to provide improved fuel preparation for subsequent combustion. Instead, the fuel is intended to be fed to a fuel reformer for conversion to H
2
and then fed to a fuel cell. In a preferred embodiment, the capillary tubes are made of metal and the capillary itself is used as a resistor, which is in electrical contact with the power output of the fuel cell. Because the flow resistance of a vapor is greater than that of a liquid, the flow is throttled as the power output increases. The fuels suggested for use include any fluid that is easily transformed from a liquid to a vapor phase by applying heat and flows freely through a capillary. Vaporization appears to be achieved in the manner that vapor lock occurs in automotive engines.
U.S. Pat. No. 6,276,347 proposes a supercritical or near-supercritical atomizer and method for achieving atomization or vaporization of a liquid. The supercritical atomizer of U.S. Pat. No. 6,276,347 is said to enable the use of heavy fuels to fire small, light weight, low compression ratio, spark-ignition piston engines that typically burn gasoline. The atomizer is intended to create a spray of fine droplets from liquid, or liquid-like fuels, by moving the fuels toward their supercritical temperature and releasing the fuels into a region of lower pres

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fuel injector for an internal combustion engine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fuel injector for an internal combustion engine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fuel injector for an internal combustion engine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3309658

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.