Fuel injection valve

Fluid sprinkling – spraying – and diffusing – Fluid pressure responsive discharge modifier* or flow... – Fuel injector or burner

Utility Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C239S491000, C239S494000, C239S584000, C239S585100, C239S590000, C239S596000

Utility Patent

active

06168094

ABSTRACT:

FIELD OF THE INVENTION
The present invention is based on a fuel injection valve.
BACKGROUND INFORMATION
German Patent no. 39 43 005 describes an electromagnetically actuated fuel injection valve, in which a plurality of disk-shaped elements are arranged in the seat area. When the magnetic circuit is excited, a flat valve plate used as a flat armature is lifted from an opposite valve seat plate interacting with it, the valve plate and the valve seat plate jointly forming a valve plate part. A swirl element that sets the fuel flowing to the valve seat in a circular swirling motion is arranged upstream from the valve seat plate. A stop plate limits the axial path of the valve plate on the side opposite the valve seat plate. The valve plate is surrounded by the swirl element with a certain amount of clearance between them; thus the swirl element guides the valve plate to a certain degree. The bottom face of the swirl element is provided with a plurality of tangential grooves, which extend from the outer periphery to a central swirl chamber. Due to the fact that the bottom face of the swirl element rests on the valve seat plate, the grooves have the form of swirl channels.
World Patent 96/11335 describes a fuel injection valve, which has a multidisk pre-swirl atomizer projection on its downstream end. This atomizer projection is provided downstream from a disk-shaped guide element built into a valve seat carrier and a valve seat that is also located on the valve seat carrier, an additional support element holds the atomizer projection in a well-defined position. The atomizer projection is made of two disks or four disks, the individual disks being made of stainless steel or silicon. Conventional machining operations, such as erosion, punching and etching, are used in the production of the opening geometries in the disks. Each individual disk of the atomizer projection is manufactured separately, after which all the disks of the same size are stacked in the desired number to form the full atomizer projection.
German Patent Application No. 196 07 288 describes a multilayer electroplating process for manufacturing perforated plates, which are particularly suitable for use in fuel injection valves. This principle of disk manufacturing by multiple metal electrodeposition of different metallic structures one on top of the other so that a single-piece disk is obtained should be expressly considered part of the disclosure content of the present invention. Micro-electroplating in a plurality of levels, layers, or strata is therefore utilized in the manufacture of the swirl disks used in the present invention.
SUMMARY
The fuel injection valve according to the present invention has the advantage that it allows a very high quality of atomization of a fuel to be injected and a highly variable jet or spray formation, which is adapted to the individual requirements such as installation conditions, engine configuration, cylinder shape, or spark plug position, to be achieved. As a result, exhaust gas emissions and fuel consumption can be reduced by the use of multilayer plated swirl disks in conjunction with perforated spray disks on the injection valve of an internal combustion engine.
In a very advantageous manner, the perforated spray disk is provided with an outlet opening, which allows the flow of the swirling fuel exiting from the swirl disk to be directly affected. Thus, the jet is shaped in a simple manner after the swirl is produced. The static injection amount and the jet parameters concerning the jet angle are set separately by the geometric arrangement of the two disks having the corresponding injection geometries. The static flow amount is set using the swirl disk, while the spray angle (both the opening angle of the actual jet or spray and spray angle y with respect to the longitudinal valve axis when oblique injection is used) are set using the perforated spray disk.
The outlet opening of the perforated spray disk is oblique with respect to the longitudinal axis of the valve in a particularly advantageous manner, so that the swirling spray takes an oblique direction, with specific jet patterns and spray shapes being attainable due to the asymmetric form of the outlet opening, which can be particularly advantageous when the fuel injection valve is used for direct injection into a cylinder of an internal combustion engine.
Due to their metallic construction, the swirl disks are unbreakable and easy to install. The use of multilayer electroplating provides considerable freedom of design, since the contours of the opening areas (inlet area, swirl channels, swirl chamber, outlet opening) can be freely selected in the swirl disk. In particular, compared to silicon disks, where the contours are strictly predefined due to the crystal axes (truncated pyramid), this flexible shaping is very advantageous.
Metal deposition has the advantage, in particular compared to the manufacture of silicon disks, of a great variety of materials being available. The most diverse metals with their different magnetic properties and hardnesses can be used in the micro-electroplating process for the manufacture of swirl disks. The different hardnesses of the various metals can be used in a particularly advantageous manner by creating a sealing metal area.
It is of particular advantage to construct the swirl disk from three layers in that three electroplating steps are performed for metal deposition. The upstream layer represents a cover element, which fully covers the swirl chamber of a central swirl-producing layer. The swirl-producing layer is made of one or more material regions, which, due to their outlines and geometric position with respect to one another, predefine the outlines of the swirl chamber and the swirl channels. The individual layers are arranged one on top of the other without gaps or joints using an electroplating process so that they represent a completely homogeneous material. In this context, the term “layer” is used only to facilitate understanding.
Two, three, four, or six swirl channels are advantageously provided in the swirl disk. The material regions can have different shapes depending on the desired outline of the swirl channels; they may be stepped or spiral-shaped, for example. Also the outlines of the swirl chamber, the cover layer, and the outlet opening can be configured in a flexible manner.


REFERENCES:
patent: 5484108 (1996-01-01), Nally
patent: 5533482 (1996-07-01), Naitoh
patent: 5570841 (1996-11-01), Pace et al.
patent: 5685491 (1997-11-01), Marks et al.
patent: 5766441 (1998-06-01), Arndt et al.
patent: 5899390 (1999-05-01), Arndt et al.
patent: 5924634 (1999-07-01), Arndt et al.
patent: 6050507 (2000-04-01), Holzgrefe et al.
patent: 34 43 005 (1990-07-01), None
patent: 196 07 288 (1996-10-01), None
patent: 196 37 103 (1998-03-01), None
patent: WO 96 11335 (1996-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fuel injection valve does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fuel injection valve, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fuel injection valve will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2552102

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.