Fluent material handling – with receiver or receiver coacting mea – With soil removing – coating – lubricating – sterilizing and/or... – Drip collection
Reexamination Certificate
2000-05-10
2001-09-18
Maust, Timothy L. (Department: 3751)
Fluent material handling, with receiver or receiver coacting mea
With soil removing, coating, lubricating, sterilizing and/or...
Drip collection
C141S088000, C141S390000, C137S312000, C137S314000
Reexamination Certificate
active
06289946
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to fuel filling points for engine driven marine craft and marine craft including fuel filling points. It particularly relates to fuel filling points for rigid hull inflatable marine craft.
BACKGROUND TO THE INVENTION
Internal fuel tanks are standard components of craft powered by combustion engines. A refueling point is consequently required through which the internal fuel tank can be refilled. Commonly the refueling point consists of an aperture which can be closed by a cap.
A potential problem with refueling via an external aperture occurs when the tank becomes full. Because the level of fuel in the tank cannot be visually monitored, additional fuel may be inadvertently added, which backs up and then overflows from the refueling aperture. Because the rate of such overflow will be equivalent to the rate at which fuel is being pumped, a considerable amount of overflowing fuel may accumulate very quickly.
One solution to this problem is to position sensors in the fuel pump to cut the flow when the tank is full. However it is not always appropriate to supply fuel to some types of vehicle, for example marine craft, using this type of fuel pump.
The problem of fuel overflow is particularly acute when the position of the refueling aperture is such that any overflow accumulates within a vehicle, rather than draining away outside the vehicle. This is a particular problem in boats and ships and most particularly in inflatable marine craft where there is a limited choice of positions for the refueling aperture.
The inboard accumulation of fuel represents a major safety hazard and overflow from refueling can be a significant cause of such an accumulation.
SUMMARY OF THE INVENTION
The present invention relates to a fuel filling point arrangement for marine craft (waterborne craft) that minimises the inboard accumulation of overflow fuel.
One aspect of the present invention provides a fuel filling point arrangement, wherein the fuel filling point arrangement includes a fuel filling point body having a fueling aperture defined by the body, a fueling conduit connected to the fueling aperture, an overflow pocket positioned below the fueling aperture so as to collect fuel overflow from the fueling aperture and a draining means for draining fuel out of the pocket.
In another aspect of the present invention, marine craft including a fuel filling arrangement of the present invention is provided.
In one embodiment, the draining means is arranged such that accumulated fuel is drained directly out of the marine craft, for example into the surrounding water, thus enabling safe removal of the fuel. However, the disposal of fuel into rivers and seas is known to be environmentally damaging and constitutes a direct violation of United States Federal statutes. Therefore, in an alternative preferred, and environmentally acceptable embodiment, the draining means is connected to a waste storage tank, which can be intermittently emptied in order to dispose of the waste in an environmentally acceptable way.
The fuel filling point may be used in any type of vehicle, but is particularly suitable for marine craft such as a rigid hull inflatable marine craft. All the components described below must be fuel resistant and all joints must prevent leakage.
The pocket may be formed in any convenient manner using any rigid material, conveniently metal or plastic. It is preferably formed from a single moulding, for ease of assembly. The single moulding may define the complete pocket or may define only part of the pocket with additional surfaces joined to the moulding to form the overflow pocket. The moulding may comprise the fueling aperture and a draining aperture and may be shaped to define at least one side of the overflow pocket, preferably at least two, more preferably at least three and most preferably at least three sides and a floor. The three sides may comprise a rear wall and two side walls at lateral sides of the floor. In such an embodiment, a fourth wall (front wall) may be formed from a second moulding, the first and second moulding together defining the pocket. The first and second moulding may be joined together by any convenient means, e.g. glue or resin. In preferred embodiments, the first and second mouldings together form a discrete entity which can be mounted on a casing of the craft.
Alternatively, the second moulding may be a wall of the casing on which the first moulding is mounted in use. For example, the interior of the external surface to which the single (first) moulding is attached may complete the pocket by providing a fourth wall. An opening in the external surface, for example at the top (or lip) of the fourth wall then allows access to the fueling aperture.
In embodiments in which the fully formed pocket is a discrete entity, the pocket moulding may be inserted into an external surface of the craft such that it is fixed to the exterior of the external surface but projects backwards through the surface into the interior. The opening allowing access to the fueling aperture is then formed by the pocket moulding itself.
Clearly other alternative embodiments are equally possible and would be apparent to a skilled person.
The pocket may be attached to an internal or an external surface of the vehicle by any convenient means to provide a fuel-tight seal. In preferred embodiments, glue or resin is used.
The fueling aperture may be at any convenient angle to facilitate access to it via an opening in the external surface. This can be achieved through the shape of the recess created by the moulding(s). The angle of the fueling aperture is preferably such that fuel can easily run down a fueling conduit connected to it under gravity. The aperture may be closed when refueling is not taking place by any convenient means, for example, using a closure or fuel cap. A fitting may be inserted into the aperture to facilitate the attachment of the fueling conduit and to prevent leakage. This fitting holds the conduit in place and aligns the bore of the conduit with the aperture. The size of the fueling aperture is preferably sufficient to receive standard size fuel pump nozzles.
The fueling conduit runs directly from the fueling aperture to the fuel tank. Preferably it is steeply angled so fuel in the conduit drains rapidly into the fuel tank. The fueling conduit may be of any fuel resistant material and is preferably flexible.
The overflow pocket is located below the fueling aperture so as to form a sink to which overflowing fuel from the fueling aperture drains under gravity. The pocket may be of any shape, but some preferred embodiments are substantially rectangular in cross section. It is desirable that the shape of the pocket should allow fuel accumulated in the pocket to drain through a draining aperture, which may be located at the lowest point of the pocket. Any swaying movement of the craft during travel will facilitate drainage through this aperture. The pocket may be of any suitable construction but is preferably formed by the attachment of the pocket to the interior of the external surface.
The overflow pocket may have any capacity sufficient to contain a fuel overflow. Preferably, therefore, the fuel receiving volume of the pocket is greater than 1 litre and more preferably greater than 1.66 litres. Preferred embodiments have a capacity of about 1.7 litres. There is no particular maximum volume of the pocket and this may be dictated by the size of the craft. 10 litres or less, preferably 5 litres or less and most preferably 3 litres or less is suitable for most types.
The draining means may take the form of an aperture located at the bottom of the overflow pocket such that fuel accumulated in the pocket will drain through it. In the event of overflow occurring, the pocket will fill up at about the same rate as that at which the fuel is being pumped. The rate of fuel draining through the draining aperture under gravity will be considerably less than the high rate of overflow, so fuel will rapidly accumulate in the pocket. This arrangement has the adva
Avon Inflatables Limited
Jones Tullar & Cooper PC
Maust Timothy L.
LandOfFree
Fuel filling point does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fuel filling point, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fuel filling point will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2451501