Fuel delivery system for a marine propulsion device

Marine propulsion – Means for accomodating or moving engine fluids – Cooling for engine

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S509000, C123S516000

Reexamination Certificate

active

06527603

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is generally related to a fuel system for a marine propulsion system and, more particularly, to a fuel system that provides a fuel reservoir in which two pumps, a lift pump and a high pressure pump, are housed and disposed within a volume of fuel stored in the fuel reservoir.
2. Description of the Prior Art
Many different types of fuel delivery systems are known to those skilled in the art for use with marine propulsion systems. Certain fuel delivery systems incorporate fuel vapor separators, which act as a reservoir and a mechanism for separating fuel vapor from liquid fuel.
U.S. Pat. No. 5,819,711, which issued to Motose on Oct. 13, 1998, describes a vapor separator for a fuel injected engine. The fuel injection system of an engine, and particularly an outboard motor, includes a fuel vapor separator that is disposed on one side of the throttle bodies at the front of the engine. The fuel vapor separator is comprised of a housing assembly having a cover plate in which an integral fuel inlet fitting, an integral fuel outlet fitting, an integral vent fitting and an integral fuel return fitting are formed. The fuel injectors for the engine are disposed on the opposite side of the throttle bodies from the fuel vapor separator and are supplied with fuel through a vertically extending fuel rail. The pressure regulator is positioned at the top of the fuel rail and the fuel rail is directly affixed to the throttle bodies.
U.S. Pat. No. 5,375,578 which issued to Kato et al on Dec. 27, 1994, describes a high pressure fuel feeding device for a fuel injection engine. The injection system for an outboard motor includes a vapor fuel separator that has a fuel chamber in which the supply of fuel is maintained by a float valve and an air chamber positioned above the fuel chamber and to one side of it and which communicates with the fuel chamber through a perforated member. A fuel media fills the air chamber and an atmospheric air inlet is provided to the air chamber. Fuel pressure and fuel regulator valves are disposed in the area to the side of the air chamber and regulate fuel and air pressure by dumping fuel and air back to the fuel and air chambers, respectively, through integral internal conduits. The regulating system includes an arrangement for regulating the fuel pressure so that it will be at least greater than the air pressure by a predetermined amount and also for precluding the delivery of air under pressure if fuel under pressure is not supplied.
U.S. Pat. No. 5,579,740, which issued to Cotton et al on Dec. 3, 1996, describes a fuel handling system. The system is intended for use with an internal combustion engine having a vapor separator for receiving fuel from a remote tank and a pump for delivering the fuel under high pressure to a fuel injector of the engine while providing vapor separation. The separator has an inlet for receiving fuel from the tank, an outlet for enabling fuel to be removed and delivered to the engine, at least one return for enabling fuel not used by the engine to be returned to the separator, and a vent for removing fuel vapor from a gas dome above a pool of liquid fuel within the separator. The inlet has a valve controlled by a float in the reservoir for admitting fuel to maintain the level of liquid fuel in the separator. To retard foaming and excessive vaporization of liquid fuel in the separator, the separator has a perforate baffle between any return and the liquid fuel pool.
U.S. Pat. No. 5,404,858, which issued to Kato on Apr. 11, 1995, describes a high pressure fuel feeding device for a fuel injection engine. An outboard motor is provided with a fuel injection system in which all of the major components of the fuel portion of the fuel/air injection system are contained within a sealed chamber having a fuel drain and the conduits that supply fuel to the fuel injectors are also contained within the fuel collecting conduits so that any fuel leaking will not escape to the atmosphere. In addition, the air pressure supplied to the fuel/air injectors is regulated and the air relieved for pressure regulation is returned to an air inlet device having a baffle for condensing any fuel in the regulated air and returning the condensed fuel to a vapor separator.
U.S. Pat. No. 5,389,245, which issued to Jaeger et al on Feb. 14, 1995, discloses a vapor separating unit for a fuel system. The vapor separating unit has particular application to a fuel system for a marine engine. The vapor separating unit includes a closed tank having a fuel inlet through which fuel is fed to the tank by a diaphragm pump. The liquid level in the tank is controlled by float-operated valve. An electric pump is located within the vapor separating tank and has an inlet disposed in the tank and an outlet connected to a fuel rail assembly of the engine. Excess fuel from the fuel rail assembly is conducted back to the upper end of the vapor separator tank. A vapor venting mechanism is incorporated in the tank to vent vapor from the tank.
U.S. Pat. No. 5,368,001, which issued to Roche on Nov. 29, 1994, describes a fuel handling system for an internal combustion engine which has a reservoir for receiving fuel under low pressure from a remote gas tank and a fuel pump for delivering the fuel under high pressure to a fuel injector of the engine while providing vapor separation. The reservoir has an inlet for receiving fuel from the tank, an outlet for removing fuel from the reservoir and delivering it to the engine, a fuel return for returning fuel not used by the engine, a drain for removing water, and a vapor vent for removing fuel vapors from a gas dome above the liquid within the reservoir. The inlet has a valve controlled by a float in the reservoir for admitting fuel to maintain the level of liquid in the reservoir so that the pump is supplied with fuel. To remove fuel, a fuel pickup is coupled to an inlet of the pump which has its outlet coupled to the reservoir outlet. The pickup has a diaphragm for filtering fuel entering the pump while preferably preventing the admission of gas or water. Preferably, a water sensor in the reservoir provides an electrical signal when it is immersed in water so that the drain can be opened to remove the water, preferably before the pickup is immersed and fuel flow to the pump and engine is cut off.
U.S. Pat. No. 5,103,793, which issued to Riese et al on Apr. 14, 1992, discloses a vapor separator for an internal combustion engine. The vapor separator includes a bowl member and a cover member. A fuel pump is located in the internal cavity of the bowl member and has its inlet located in the lower portion of the bowl member cavity, for supplying fuel thereto. The fuel pump is secured in position within the bowl member by engagement of the cover member with the fuel pump. The cover member includes a mounting portion for mounting a water separating filter element to the vapor separator assembly. The cover member includes structure for routing fuel from the discharge of the water separating filter element to the interior of the bowl member internal cavity. A compact arrangement is thus provided for the vapor separator, the fuel pump, and the water separating filter, eliminating a number of hose connections between such components as well as facilitating assembly of the engine.
U.S. Pat. No. 5,309, 885, which issued to Rawlings et al on May 10, 1994, describes a marine propulsion device including a fuel injected, four-cycle internal combustion engine. The internal combustion engine comprises an engine block including a combustion chamber, a fuel vapor separator, a fuel supply mechanism for introducing fuel to the combustion chamber, a conduit communicating between the fuel vapor separator and the fuel supply mechanism for introducing fuel, and a cooling jacket for cooling the fuel vapor separator.
U.S. Pat. No. 6,170,470 B1, which issued to Clarkson et al on Jan. 9, 2001, discloses a fuel supply system for an internal combustion engine. The fuel system provides first and second conduits t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fuel delivery system for a marine propulsion device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fuel delivery system for a marine propulsion device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fuel delivery system for a marine propulsion device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3034592

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.