Chemistry: electrical current producing apparatus – product – and – With pressure equalizing means for liquid immersion operation
Reexamination Certificate
2001-04-19
2004-04-13
Gulakowski, Randy (Department: 1746)
Chemistry: electrical current producing apparatus, product, and
With pressure equalizing means for liquid immersion operation
C429S010000
Reexamination Certificate
active
06720099
ABSTRACT:
BACKGROUND
A fuel cell is an energy conversion device that converts chemical energy into electrical energy. The fuel cell generates electricity and heat by electrochemically combining a gaseous fuel, such as hydrogen, carbon monoxide, or a hydrocarbon, and an oxidant, such as air or oxygen, across an ion-conducting electrolyte. The fuel cell generally consists of two electrodes positioned on opposite sides of an electrolyte. The oxidant passes over the oxygen electrode (cathode) while the fuel passes over the fuel electrode (anode), generating electricity, water, and heat.
A solid oxide fuel cell (SOFC) is constructed of solid-state materials, utilizing an ion conductive oxide ceramic as the electrolyte. The electrochemical cell in a SOFC is comprised of an anode and a cathode with an electrolyte disposed therebetween. The components of an electrochemical cell and a SOFC are rigid and extremely fragile since they are produced from brittle materials.
In a SOFC, a fuel flows to the anode where it is oxidized by oxygen ions from the electrolyte, producing electrons that are released to the external circuit, and mostly water and carbon dioxide that are removed in the fuel flow stream. At the cathode, the oxidant accepts electrons from the external circuit to form oxygen ions. The oxygen ions migrate across the electrolyte to the anode. The flow of electrons through the external circuit provides for consumable or storable electricity. However, each individual electrochemical cell generates a relatively small voltage. Higher voltages are attained by electrically connecting a plurality of electrochemical cells in series to form a stack.
The SOFC stacks exhaust unused fuel and oxidant. This exhaust is utilized in a waste energy recovery unit as a source of chemical and thermal energy. The waste energy recovery unit is a device that converts chemical energy and thermal energy into input thermal energy. This is accomplished with heat exchangers. However, waste energy recovery units can be inefficient in recovering the waste energy, and allow emissions of undesirable gaseous compounds, due to incomplete reactions of the unused fuel and oxidant.
SUMMARY
The drawbacks and disadvantages of the prior art are overcome by a method and apparatus for a waste energy recovery assembly for a fuel cell system, which are disclosed. In one embodiment, the waste energy recovery assembly for a fuel cell system comprises: a cathode exhaust passage in fluid communication with a mixing zone through a collection chamber; an anode exhaust passage in fluid communication with said mixing zone by way of an anode exhaust gas orifice disposed in a direction capable of forming an anode exhaust gas flow entering said mixing zone at an angle of about 45° to about 135° to a combined gas flow entering said mixing zone from said collection chamber; a thermal exchange structure in fluid communication with said mixing zone; and an exhaust gas passage in fluid communication with said thermal exchange structure.
One embodiment of the method of using a waste energy recovery assembly for a fuel cell system comprises: supplying reformate and supply air to said waste energy recovery assembly; directing said supply air and said reformate through a thermal exchange structure in said waste energy recovery assembly, wherein said supply air is separated from said reformate; introducing cathode exhaust gas to a mixing zone; introducing anode exhaust gas to said mixing zone at an angle of about 45° to about 135° a combined gas flow direction to form composite gases; combusting said composite gases; and flowing said combusted composite gases through said thermal exchange structure in thermal communication with said reformate and said supply air.
REFERENCES:
patent: 2001/0004500 (2001-06-01), Grasso et al.
Delphi Technologies Inc.
Gulakowski Randy
Marshall Paul L.
Wills M.
LandOfFree
Fuel cell waste energy recovery combustor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fuel cell waste energy recovery combustor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fuel cell waste energy recovery combustor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3267430