Chemistry: electrical current producing apparatus – product – and – With pressure equalizing means for liquid immersion operation
Reexamination Certificate
1999-09-24
2001-10-09
Kalafut, Stephen (Department: 1745)
Chemistry: electrical current producing apparatus, product, and
With pressure equalizing means for liquid immersion operation
C429S010000, C429S006000
Reexamination Certificate
active
06299996
ABSTRACT:
BACKGROUND OF THE INVENTION
A fuel cell can convert chemical energy to electrical energy by promoting a chemical reaction between two reactant gases.
One type of fuel cell includes a cathode flow field plate, an anode flow field plate, a membrane electrode assembly disposed between the cathode flow field plate and the anode flow field plate, and gas diffusion layers disposed between the cathode flow field plate and the anode flow field plate. A fuel cell can also include one or more coolant flow field plates disposed adjacent the exterior of the anode flow field plate and/or the exterior of the cathode flow field plate.
Each reactant flow field plate has an inlet region, an outlet region and open-faced channels connecting the inlet region to the outlet region and providing a way for distributing the reactant gases to the membrane electrode assembly.
The membrane electrode assembly usually includes a solid electrolyte (e.g., a proton exchange membrane) between a first catalyst and a second catalyst. One gas diffusion layer is between the first catalyst and the anode flow field plate, and another gas diffusion layer is between the second catalyst and the cathode flow field plate.
During operation of the fuel cell, one of the reactant gases (the anode reactant gas) enters the anode flow field plate at the inlet region of the anode flow field plate and flows through the channels of the anode flow field plate toward the outlet region of the anode flow field plate. The other reactant gas (the cathode reactant gas) enters the cathode flow field plate at the inlet region of the cathode flow field plate and flows through the channels of the cathode flow field plate toward the cathode flow field plate outlet region.
As the anode reactant gas flows through the channels of the anode flow field plate, some of the anode reactant gas passes through the anode gas diffusion layer and interacts with the anode catalyst. Similarly, as the cathode reactant gas flows through the channels of the cathode flow field plate, some of the cathode reactant gas passes through the cathode gas diffusion layer and interacts with the cathode catalyst.
The anode catalyst interacts with the anode reactant gas to catalyze the conversion of the anode reactant gas to reaction intermediates. The reaction intermediates include ions and electrons. The cathode catalyst interacts with the cathode reactant gas and the reaction intermediates to catalyze the conversion of the cathode reactant gas to the chemical product of the fuel cell reaction.
The chemical product of the fuel cell reaction flows through a gas diffusion layer to the channels of a flow field plate (e.g., the cathode flow field plate). The chemical product then flows along the channels of the flow field plate toward the outlet region of the flow field plate.
The electrolyte provides a barrier to the flow of the electrons and reactant gases from one side of the membrane electrode assembly to the other side of the membrane electrode assembly. However, the electrolyte allows ionic reaction intermediates to flow from the anode side of the membrane electrode assembly to the cathode side of the membrane electrode assembly.
Therefore, the ionic reaction intermediates can flow from the anode side of the membrane electrode assembly to the cathode side of the membrane electrode assembly without exiting the fuel cell. In contrast, the electrons flow from the anode side of the membrane electrode assembly to the cathode side of the membrane electrode assembly by electrically connecting an external load between the anode flow field plate and the cathode flow field plate. The external load allows the electrons to flow from the anode side of the membrane electrode assembly, through the anode flow field plate, through the load and to the cathode flow field plate.
Because electrons are formed at the anode side of the membrane electrode assembly, that means the anode reactant gas undergoes oxidation during the fuel cell reaction. Because electrons are consumed at the cathode side of the membrane electrode assembly, that means the cathode reactant gas undergoes reduction during the fuel cell reaction.
For example, when molecular hydrogen and molecular oxygen are the reactant gases used in a fuel cell, the molecular hydrogen flows through the anode flow field plate and undergoes oxidation. The molecular oxygen flows through the cathode flow field plate and undergoes reduction. The specific reactions that occur in the fuel cell are represented in equations 1-3.
H
2
→2H
+
+2e
−
(1)
½O
2
+2H
+
+2e
−
→H
2
O (2)
H
2
+½O
2
→H
2
O (3)
As shown in equation 1, the molecular hydrogen forms protons (H
+
) and electrons. The protons flow through the electrolyte to the cathode side of the membrane electrode assembly, and the electrons flow from the anode side of the membrane electrode assembly to the cathode side of the membrane electrode assembly through the external load. As shown in equation 2, the electrons and protons react with the molecular oxygen to form water. Equation 3 shows the overall fuel cell reaction.
In addition to forming chemical products, the fuel cell reaction produces heat. One or more coolant flow field plates are typically used to conduct the heat away from the fuel cell and prevent it from overheating.
Each coolant flow field plate has an inlet region, an outlet region and channels that provide fluid communication between the coolant flow field plate inlet region and the coolant flow field plate outlet region. A coolant (e.g., liquid de-ionized water) at a relatively low temperature enters the coolant flow field plate at the inlet region, flows through the channels of the coolant flow field plate toward the outlet region of the coolant flow field plate, and exits the coolant flow field plate at the outlet region of the coolant flow field plate. As the coolant flows through the channels of the coolant flow field plate, the coolant absorbs heat formed in the fuel cell. When the coolant exits the coolant flow field plate, the heat absorbed by the coolant is removed from the fuel cell.
To increase the electrical energy available, a plurality of fuel cells can be arranged in series to form a fuel cell stack. In a fuel cell stack, one side of a flow field plate functions as the anode flow field plate for one fuel cell while the opposite side of the flow field plate functions as the cathode flow field plate in another fuel cell. This arrangement may be referred to as a bipolar plate. The stack may also include monopolar plates such as, for example, an anode coolant flow field plate having one side that serves as an anode flow field plate and another side that serves as a coolant flow field plate. As an example, the open-faced coolant channels of an anode coolant flow field plate and a cathode coolant flow field plate may be mated to form collective coolant channels to cool the adjacent flow field plates forming fuel cells.
SUMMARY OF THE INVENTION
The invention relates to a fuel cell system having two operational states, namely a first operational state and a second operational state. In the first operational state, the anode flow field plates are connected to a fuel gas supply along a flow path. In the second operational state, the anode flow field plates are disconnected from the fuel gas supply and connected to an oxidant gas supply along a flow path. The second operational state can be used when a low system power output is desired, such as when the fuel cell system is in an idle state.
One potential advantage of the invention is that operating the system in the second operational state can reduce the amount of contamination of the fuel cells contained in the system relative to an otherwise substantially identical system that has only one of the operational states.
Another potential advantage of the invention is that the system power output in the first operational state can be maintained at a high level without substantial degradation by periodically op
Karuppaiah Chock
Nestler, Jr. Edward W.
White Eric T.
Crepeau Jonathan
Fish & Richardson P.C.
Kalafut Stephen
Plug Power Inc.
LandOfFree
Fuel cell system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fuel cell system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fuel cell system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2617575