Chemistry: electrical current producing apparatus – product – and – With pressure equalizing means for liquid immersion operation
Reexamination Certificate
2000-12-13
2002-06-04
Bell, Bruce F. (Department: 1741)
Chemistry: electrical current producing apparatus, product, and
With pressure equalizing means for liquid immersion operation
C429S006000, C429S006000, C429S006000
Reexamination Certificate
active
06399234
ABSTRACT:
TECHNICAL FIELD
The present invention relates to proton exchange membrane fuel cells and membrane electrode assemblies for fuel cells. More specifically, the present invention relates to improved construction of fuel cells to simplify and reduce the cost of production of such cells. In addition, the present invention relates to methods for bonding fuel cell components to one another as well as sealing of the fuel cell stack.
BACKGROUND ART
Solid polymer electrolyte fuel cell power plants are known in the prior art, and prototypes are even available from commercial sources. These systems are serviceable, but are relatively complex. An example of a polymer membrane power plant is shown in U.S. Pat. No. 5,360,679, granted Nov. 1, 1994.
In addition, known fuel cell constructions commonly include a proton exchange membrane disposed between respective cathode and anode plates. The general principles of construction and operation of such fuel cells are so well known that they need not be discussed here in great detail. In general, the operation of a proton exchange membrane (PEM) fuel cell includes the supply of gaseous fuel and an oxidizing gas to the anode electrode plate and cathode electrode plate, respectively, and distributed as uniformly as possible over the active surfaces of the respective electrode plates, or, more specifically, the electrode plate surfaces facing the proton exchange membrane, each of which typically includes a catalyst layer therebetween. An electrochemical reaction takes place at and between the anode plate and cathode plate, with attendant formation of a product of the reaction between the fuel and oxygen, release of thermal energy, creation of an electrical potential difference between the electrode plates, and travel of electric charge carriers between the electrode plates, with the thus generated electric power usually constituting the useful output of the fuel cell.
One problem occurring in solid polymer fuel cells relates to the management of water, both coolant and product water, within the cells in the power plant. In a solid polymer membrane fuel cell power plant, product water is formed by an electrochemical reaction on the cathode side of the cells, specifically by the combination of hydrogen ions, electrons and oxygen molecules. The product water must be drawn away from the cathode side of the cells, and makeup water must be provided to the anode side of the cells in amounts which will prevent dryout of the proton exchange membrane, while avoiding flooding, of the cathode side of the electrode plate.
Austrian Patent No. 389,020 describes a hydrogen ion-exchange membrane fuel cell stack which utilizes a fine pore water coolant plate assemblage to provide a passive coolant and water management control. The Austrian system utilizes a water-saturated fine pore plate assemblage between the cathode side of one cell and the anode side of the adjacent cell to both cool the cells and to prevent reactant crossover between adjacent cells. The fine pore plate assemblage is also used to move product water away from the cathode side of the ion-exchange membrane and into the coolant water stream; and to move coolant water toward the anode side of the ion-exchange membrane to prevent anode dryout. The preferred directional movement of the product and coolant water is accomplished by forming the water coolant plate assemblage in two parts, one part having a pore size which will ensure that product water formed on the cathode side will be wicked into the fine pore plate and moved by capillarity toward the water coolant passage network which is inside of the coolant plate assemblage. The coolant plate assemblage also includes a second plate which has a finer pore structure than the first plate, and which is operable to wick water out of the water coolant passages and move that water toward the anode by capillarity. The fine pore and finer pore plates in each assemblage are grooved to form the coolant passage network and reactant passage network, and are disposed in face-to-face alignment between adjacent cells. The finer pore plate is thinner than the fine pore plate so as to position the water coolant passages in closer proximity with the anodes than with the cathodes. The aforesaid solution to water management and cell cooling in ion-exchange membrane fuel cell power plants is difficult to achieve due to the quality control requirements of the fine and finer pore plates, and is also expensive because the plate components are not uniformly produced.
In the fuel cell technology, the water transport plate is a porous structure filled with water. During fuel cell operation, the water transport plate supplies water locally to maintain humidification of a proton exchange membrane (PEM), removes product water formed at the cathode, removes by-product heat via a circulating coolant water stream, conducts electricity from cell to cell, provides a gas separator between adjacent cells and provides passages for conducting the reactants through the cell. The water transport plate supplies water to the fuel cell to replenish water which has been lost by evaporation therefrom. This system and operation thereof is described in U.S. Pat. No. 5,303,944 by Meyer, U.S. Pat. No. 5,700,595 by Reiser and U.S. Pat. No. 4,769,297 by Reiser, each incorporated herein by reference.
For a fuel cell to be economically feasible, it must not only have a superior design and have the desired performance but it must also be capable of being mass produced. The mass production of fuel cell components raises several issues which are of great concern. The cost of production must be kept as low as possible without sacrificing quality and efficiency of the cell. As fuel cell components become more complex and more components are needed in a given fuel cell, the cost of that cell increases significantly.
Fuel cell components, such as gas diffusion layers, catalyst layers, substrates, and water transport plates are becoming increasing complex requiring precision dimensioning. In particular, prior art fuel cell components commonly employ edge gaskets which, in combination with the components above, require close tolerances in the manufacturing process to avoid the component being scrapped and to provide an effective seal. The requirement of maintaining close tolerances are necessitated due to the inherent step discontinuities associated with the employment of edge gaskets within known fuel cell assemblies.
Further, a major concern with PEM fuel cells is reactant distribution and containment within the cell. This is of particular concern when employing porous members such as electrode substrates. This porosity is needed to supply to and substantially uniformly distribute over the respective active surface the respective gaseous medium which is fed through respective channels provided in the anode water transport plate and the cathode water transport plate to the areas of the respective electrode plate that are catalytically active and spaced from the proton exchange membrane. Also, these porous structures are used to remove the reaction water from one of the active surfaces and supply of water to the other active surfaces to avoid drying out of the proton exchange membrane.
When porous water transport plates and porous electrode substrates are employed in a PEM fuel cell, it is necessary to ensure that neither any liquid, such as product or coolant water in a PEM fuel cell, nor any gaseous media such as the fuel or oxidant, be able to flow in or out of the periphery or edge of the respective porous water transport plate or electrode substrate. The escape of reactant gases through the periphery or edge of the water transport plates or electrode substrates results in the loss of the respective media causing a decrease in fuel cell efficiency. Most importantly, preventing the escape of gaseous media through the periphery or edge of the water transport plate or electrode substrate is critical to avoid the mixture of gaseous fuel with the oxidizing gas or ambient air which could be catastrophic. Therefore, m
Bonk Stanley P.
Krasij Myron
Reiser Carl A.
Barlow Josephs & Holmes, Ltd.
Bell Bruce F.
UTC Fuel Cells LLC
LandOfFree
Fuel cell stack assembly with edge seal does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fuel cell stack assembly with edge seal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fuel cell stack assembly with edge seal will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2891514