Chemistry: electrical current producing apparatus – product – and – With pressure equalizing means for liquid immersion operation
Reexamination Certificate
1999-11-24
2001-11-06
Brouillette, Gabrielle (Department: 1745)
Chemistry: electrical current producing apparatus, product, and
With pressure equalizing means for liquid immersion operation
C429S006000, C429S006000, C429S006000
Reexamination Certificate
active
06312846
ABSTRACT:
BACKGROUND OF THE INVENTION
The electrochemical fuel cell is not new. Invented in 1839 by Alexander Grove, it has recently been the subject of extensive development. NASA used its principals in their 1960's space program, but the latest push into this technology is being driven largely by the automotive industry. Daimler-Chrysler and Ford Motor Co. together have invested about $750 million in a partnership to develop fuel cell systems. As environmental concerns mount and legislation toughens, development of “green” energy sources becomes more justified as a course of action, if not required.
The information age has ushered in the necessity for new ways to examine, process, manage, access and control the information. As the basic technologies and equipment evolve to handle these new requirements, there is a growing need for a smaller, lighter and faster (to refuel/recharge) electrical energy source. Portable computing and communications, in particular, would benefit greatly from a miniature fuel cell based power source.
SUMMARY OF THE INVENTION
In accordance with the invention, a method and apparatus is provided which uses a combination of SAMs (self-assembled monolayers), MEMS (micro electrical mechanical systems), “chemistry-on-a-chip” and semiconductor fabrication techniques to create a scalable array of power cells directly on a substrate, preferably a semiconductor wafer. These wafers may be “stacked” (i.e. electrically connected in series or parallel, as well as individually programmed to achieve various power (V*I) characteristics and application driven configurations.
One preferred embodiment of the invention is formed by fabricating a plurality of individual fuel cells on a planar semiconductor wafer into which flow channels are formed by etching or other well-known semiconductor processes. Oxygen is admitted into one side of a channel and hydrogen into the other side; with the two gases being separated by a membrane. Electrodes are formed on opposite sides of the membrane and a catalyst is provided in electrical communication with the electrode and membrane on both sides. Lastly, a gas impermeable cover or lid is attached to the cell.
Preferably, the membrane is a PEM (Proton Exchange Membrane) formed by depositing or otherwise layering a column of polymers into etched channels in the substrate to create a gas tight barrier between the oxygen and hydrogen, which is capable of conveying hydrogen ions formed by the catalyst across the barrier to produce electricity across the contacts and water when the H-ions combine with the oxygen in the other channel.
In addition, a number of fuel cells can be electrically interconnected and coupled to gas sources on a portion of the same wafer to form a “power chip”. Traditional electrical circuitry can be integrated on the wafer along with the chips to provide process monitoring and control functions for the individual cells. Wafers containing multiple chips (power discs) or multiple cells can then be vertically stacked upon one another.
A further understanding of the nature and advantages of the invention herein may be realized with respect to the detailed description which follows and the drawings described below.
REFERENCES:
Fuel Cells 2000, “The Online Fuel Center Information Center”, (visited Oct. 22, 1999) <http://www.fuelcells.org>.
Institut AG, “Fuel Cell”, The Way Things Work: vol. One: 52-53 (George Allen & Unwin Ltd. trans., 1967).
About.com, “Fuel Cells—Part 1: Types and How They Operate” (Apr. 4, 1999), <http://energyindustry.about.com/industry/energyindustry/library/weekly/aa040499.htm>.
About.com, “Fuel Cells—Part 2: Uses” (Apr. 25, 1999), <http://energyindustry.about.com/industry/energyindustry/library/weekly/aa042599.htm>.
National Resources Defense Council, “Reports: Choosing Clean Power, Bringing the Promise of Fuel Cells to New York”, (visited Oct. 22, 1999) <http://www.nrdc.org
rdcpro/ccp/ccpinx.html>.
Brouillette Gabrielle
Hamilton Brook Smith & Reynolds P.C.
Integrated Fuel Cell Technologies, Inc.
Wills M.
LandOfFree
Fuel cell and power chip technology does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fuel cell and power chip technology, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fuel cell and power chip technology will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2579568