Fuel additive formulation and method of using same

Fuel and related compositions – Liquid fuels – Containing organic -c

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C044S413000

Reexamination Certificate

active

06319294

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an improved fuel additive formulation for internal combustion engines, and method of making and using the same. The fuel additive of the present invention provides an improved motor fuel, particularly for automobiles. The formulation of the present invention is useful in either gasoline- or diesel-fueled engines, and in automobiles, trucks, and various other engine applications. In a preferred embodiment, the invention is an additive formulation, and method of making and using the formulation, to reduce emissions, improve performance and environmental health and safety, and reduce the risks of toxic substances associated with motor fuels.
BACKGROUND OF THE INVENTION
For some time, various companies and persons have worked to improve the performance and reduce the adverse environmental effects of internal combustion engines. As the increased use of automobiles in the United States has offset reductions in auto emissions, legislators, regulators, the petroleum and automobile industries and various other groups have sought new ways to address air pollution from cars. As part of that effort, these groups have increasingly focused on modification of fuels and fuel additives. Perhaps the best known fuel modification relating to air pollution control is the elimination of lead, used as an antiknock compound, from gasoline.
The 1990 amendments to the Clean Air Act contain a new fuels program, including a reformulated gasoline program to reduce emissions of toxic air pollutants and emissions that cause summer ozone pollution, and an oxygenated gasoline program to reduce carbon monoxide emissions in areas where carbon monoxide is a problem in winter. Environmental agencies, such as the United States Environmental Protection Agency (EPA) and the California Air Resources Board (CARB), have promulgated various regulations compelling many fuel modification efforts. A coalition of automobile manufacturers and oil companies has extensively reviewed the technology for improving fuel formulations and produced what has been referred to as the “Auto/Oil” study. The data from the Auto/Oil study has formed the basis for some regulatory approaches, such as CARB's matrix of acceptable gasoline formulations.
With respect to the oxygenated gasoline program, the most commonly used oxygenates are ethanol, made from biomass (usually grain or corn in the United States) and methyl tertiary butyl ether (MTBE), made from methanol that is usually made from natural gas. Oxygenates such as ethanol and MTBE increase a fuel's octane rating, a measure of its tendency to resist engine knock. In addition, MTBE mixes well with gasoline and is easily transported through the existing gasoline pipeline distribution network. See, American Petroleum Institute website: Issues and Research Papers (http://www.api.org
ewsroom.cgi) “
Questions About Ethanol
” and “
MTBE Questions and Answers
”; and “
Achieving Clean Air and Water: The Report of the Blue Ribbon Panel on Oxygenates in Gasoline
,” which are incorporated herein by reference.
Reformulated gasoline has been blended to reduce both exhaust and evaporative air pollution, and to reduce the photochemical reactivity of the emissions that are produced. Reformulated gasoline is certified by the Administrator of the EPA and must include at least two percent (2%) oxygenate by weight (the so-called “oxygen mandate”). Ethanol and MTBE are both used in making reformulated gasoline.
Both ethanol (as well as other alcohol-based fuels) and MTBE have significant drawbacks. Ethanol-based fuel formulations have failed to deliver the desired combination of increased performance, reduced emissions, and environmental safety. They do not perform substantially better than straight-run gasoline and increase the cost of the fuel.
Adding either ethanol or MTBE to gasoline dilutes the energy content of the fuel. Ethanol has a lower energy content than MTBE, which in turn has a lower energy content than straight-run gasoline. Ethanol has only about 67% the energy content of the same volume of gasoline and it has only about 81% of the energy content of an equivalent volume of MTBE. Thus, more fuel is required to travel the same distance, resulting in higher fuel costs and lower fuel economy. In addition, the volatility of the gasoline that is added to an ethanol/gasoline blend must be further reduced in order to offset the increased volatility of the alcohol in the blend.
Ethanol has not proven cost effective, and is subject to restricted supply. Because of supply limitations, distribution problems, and its dependence on agricultural conditions, ethanol is expensive. The American Petroleum Institute reports that, in 1999, ethanol was about twice the cost of an energy equivalent amount of gasoline. The politics of agriculture also effect ethanol supply and price.
Ethanol also has a much greater affinity for water than do petroleum products. It cannot be shipped in petroleum pipelines, which invariably contain residual amounts of water. Instead, ethanol is typically transported by truck, or manufactured where gasoline is made. Ethanol is also corrosive In addition, at higher concentrations, the engine must be modified to use an ethanol blend.
Ethanol has other drawbacks as well. Ethanol has a high vapor pressure relative to straight-run gasoline. Its high vapor pressure increases fuel evaporation at temperatures above 130° Fahrenheit, which leads to increases in volatile organic compound (VOC) emissions. EPA has concluded that VOC emissions would increase significantly with ethanol blends. See,
Reformulated Gasoline
Final Rule, 59 Fed. Reg. 7716, 7719 (1994).
Finally, although much research has focused on the health effects of ethanol as a beverage, little research has addressed ethanol's use as a fuel additive. Nor has ethanol been evaluated fully from the standpoint of its environmental fate and exposure potential.
MTBE has its share of drawbacks as well. MTBE was first added to gasoline to boost the octane rating. In line with the 1990 Clean Air Act amendments, MTBE was added in even larger amounts as an oxygenate to reduce air pollution. Unfortunately, MTBE is now showing up as a contaminant in groundwater throughout the United States as a result of releases (i.e., leaking underground gasoline storage tanks, accidental spillage, leakage in transport, automobile accidents resulting in fuel releases, etc.).
MTBE is particularly problematic as a groundwater contaminant because it is soluble in water. It is highly mobile, does not cling to soil particles, and does not decay readily. MTBE has been used as an octane enhancer for about twenty years. The environmental and health risks posed by MTBE, therefore, parallel those of gasoline. Some sources estimate that 65% of all leaking underground fuel storage tank sites involve releases of MTBE. It is estimated that MTBE may be contaminating as many as 9,000 community water supplies in 31 states. A University of California study showed that MTBE has affected at least 10,000 groundwater sites in the State of California alone. The full extent of the problem may not be known for another ten years. See, “
MTBE, to What Extent Will Past Releases Contaminate Community Water Supply Wells?,” ENVIRONMENTAL SCIENCE AND TECHNOLOGY, at
2-9 (May 1, 2000), which is incorporated herein by reference.
EPA also has determined that MTBE is carcinogenic, at least when inhaled. Other unwelcome environmental characteristics are its foul smell and taste, even at very low concentrations (parts per billion). Because of the se drawbacks, the U.S. government is considering banning MTBE as a gasoline additive. In September 1999, EPA recommended that MTBE use be curtailed or phased out. Several states are planning to halt or reduce MTBE use. California plans to phase it out by 2002, and Maine already has the EPA's permission to quit using MTBE if it can find other ways of meeting air quality standards. The EPA also has approved New Jersey's request to stop using MTBE in gasoline during the wi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fuel additive formulation and method of using same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fuel additive formulation and method of using same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fuel additive formulation and method of using same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2607584

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.