Frost image recording medium and method of and apparatus for for

Radiation imagery chemistry: process – composition – or product th – Electric or magnetic imagery – e.g. – xerography,... – Deformation imaging – e.g. – frost imaging – etc.

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

G03G 5022

Patent

active

053785657

DESCRIPTION:

BRIEF SUMMARY
TECHNICAL FIELD

The present invention relates to an information recording medium for forming a frost image on a thermoplastic resin layer, a method of forming a frost image on the information recording medium, a method of optically reading the frost image thus formed, and an apparatus for making an original for an overhead projector (OHP), a microfilm, a transmission slidefilm, etc. from a frost image.


BACKGROUND ART

There has heretofore been a conventional information recording medium of the type in which the surface of a thermoplastic resin layer is charged by means of an electron beam in a vacuum to store information electric charge thereon and, after the charging, the thermoplastic resin layer is softened by heating to form on the surface thereof a frost image comprising dimple patterns corresponding to the quantity of electric energy stored thereon.
However, most conventional apparatuses designed to effect image formation in a vacuum are large in size and have difficulty in forming a frost image, depending on the type of thermoplastic resin used.
In the meantime, recording media that need no vacuum system are also known, for example, a thermoplastic recording medium that comprises a photoconductive layer and a thermoplastic resin layer, which are successively stacked on an electrode, and a thermoplastic recording medium comprising a single layer having both thermoplasticity and photoconductivity. There has also been a known method of recording information on such thermoplastic recording media, wherein, after a thermoplastic recording medium is subjected to initial overall charging by corona charging, for example, image exposure is effected, and the medium is fully charged again and then developed by heating or in a solvent vapor, thereby forming a frost image corresponding to the image exposure.
According to this developing method, a photoconductive member 10, which comprises an electrode 10b and a thermoplastic resin layer 10a that are formed on a substrate 10c, is uniformly charged by corona charging with a charger 11, as shown exemplarily in FIG. 1(a). Then, image exposure is effected to form an electrostatic charge pattern corresponding to the image, as shown in FIG. 1(b). Thereafter, the photoconductive member is heated with a heater 12, with the electrode 10b grounded, as shown in FIG. 1(c). In consequence, the thermoplastic resin layer 10a is plasticized, and the electric surface charge and the electric charge of the opposite sign that is induced on the electrode 10b in correspondence to the electrostatic charge pattern attract each other. As a result, a dimple pattern image 10d, that is, a frost image, is formed on the surface of the thermo-plastic resin layer, as shown in FIG. 1(d). After the formation of the frost image, the photoconductive member is cooled to fix the dimple pattern image, thus enabling development of the electrostatic charge pattern.
However, the conventional developing method shown in FIGS. 1(a)-1(d) is inferior in the electric charge retaining performance because the electrostatic latent image is formed on the photoconductive member.
In addition, the recording medium that has a photoconductive layer needs an operation of effecting overall charging by, for example, corona charging, to perform recording.
Further, the conventional developing method shown in FIGS. 1(a)-1(d) cannot always obtain satisfactorily deep dimple patterns and hence cannot increase the density range.
In addition, the frost image cannot be formed unless the potential of the electrostatic latent image is higher than a predetermined level V1, and it is saturated at a voltage higher than a predetermined level V2. Thus, the tonal reproducibility is restricted within a predetermined potential range. In the meantime, the surface potential of an information recording medium shows characteristics relative to the exposure energy, such as those shown in FIGS. 2(a)-2(d). Thus, a frost image is formed within a surface potential range of from V1 to V2, and the tonal reproducibility is obtained only within this r

REFERENCES:
patent: 3973957 (1976-08-01), Montgomery
patent: 3973958 (1976-08-01), Bean

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Frost image recording medium and method of and apparatus for for does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Frost image recording medium and method of and apparatus for for, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Frost image recording medium and method of and apparatus for for will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2210562

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.