Frictionally welded thermoplastic articles having improved...

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06726790

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to welding of thermoplastic articles; and more particularly, to a thermoplastic article comprising a frictionally welded butt joint having improved strength and a method for forming the welded joint.
2. Description of the Prior Art
Frictional welding of thermoplastic components is well established in the art. Frictional welding includes the techniques of linear vibration welding, orbital welding and spin welding. In each of these techniques, the process is accomplished by placing the two workpieces to be welded in stacked, juxtaposed relation, applying a compressive force between the workpieces and then applying a vibrational, orbital or rotational motion of the workpieces relative to one another in the plane of the interface between the two. Frictional heating of the interface causes melt down and flow of the thermoplastic material in a melt zone. Upon cessation of motion, and subsequent cooling under pressure, solidification of the material in the melt zone forms a welded joint between the workpieces.
Parts to be welded frequently are of different thicknesses. Typically, one part may be 2 to 4 mm thick and the other part 4 to 6 mm thick in the region of the weld area.
The phenomenology of the vibration welding process has been described and analyzed. See V. K. Stokes, “Vibration Welding of Thermoplastics, Part I: Phenomenology of the Welding Process”,
Polymer Engineering and Science
, 28, 718 (1988); “Vibration Welding of Thermoplastics, Part II, Analysis of the Welding Process”,
Polymer Engineering and Science
, 28, 728 (1988). Stokes described the welding process as occurring in four phases:
1) Heating of the interface by friction;
2) Melting and flow outward in a direction lateral to the vibratory motion;
3) A steady state at which the melting rate of the solid equals the outflow of the molten material; and
4) Solidification of the molten material when the vibratory motion is stopped.
The molten material squeezed out of the joint during the welding operation is variously called “flash” or “flush”. If the appearance of the flash is objectionable in the finished part, a separate operation may remove the flash after welding. Alternatively, the parts to be welded may incorporate “flash traps” which hide the flash from view.
The strength of the frictionally welded zone is a complex function of a number of parameters. Among these are the vibrational frequency, the amplitude and direction of the vibratory motion (longitudinal, lateral, angular, orbital), the pressure normal to the interface between the workpieces, the weld time or the weld penetration (melt down) and the hold or cooling time. The effects of some of these parameters on the strengths of several unfilled thermoplastics has been reported by V. K. Stokes in “Vibrational Welding of Thermoplastics, Part IV: Strengths of Poly(Butylene Terepthalate), Polyetherimide and Modified Polyphenylene Oxide Butt Welds”
Polymer Engineering and Science
, 28, 998 (1988).
For many applications, such as automotive under-the hood applications, power tools and others, it is necessary to incorporate reinforcing fibers in the base thermoplastic materials. These reinforcing fibers, such as glass, carbon, metal, aramid or other fibers, greatly increase the strength, stiffness and heat distortion temperature of the base resins. The presence of these reinforcing fibers affects and complicates the relationships between the welding processing parameters and the strengths of the welds in the thermoplastic materials to be joined. V. Kagan et. al. described the vibration welding of such filled thermoplastics in “The Optimized Performance of Linear Vibration Welded Nylon 6 and Nylon 66 Butt Joints”, Plastics-Racing into the Future,
Proceedings of the SPE
54
th
Annual Technical Conference and Exhibits
, p.1266-1274, 1996 and also in U.S. Pat. No. 5,874,146, which publications are herein incorporated by reference thereto. It was found that under optimized welding processing conditions such that fibers from one of the workpieces penetrated both into the weld, and into the other workpiece, the welds reached a maximum tensile strength. Under less than optimal processing conditions, the reinforcing fibers failed to bridge the weld region, and consequently the strengths of the welds were lower.
In each of the above studies, the workpieces to be welded had strictly planar opposing surfaces. No suggestion was made that other than planar initial interfacial geometries could be of advantage. Indeed, in “Vibration Welding of Thermoplastics, Part I: Phenomenology of the Welding Process”,
Polymer Engineering and Science
, 28, 718 (1988) at P. 718, first column, second paragraph, the author states, “The vibration welding process is ideally suited to the welding of thermoplastic parts along relatively flat seams. The process can also accommodate seams whose out-of-plane curvature is small.” Thus, the author indicates that non-planar longitudinal interfaces are disadvantages to be “accommodated”. No comments were made about the cross-sectional geometry of the parts to be welded.
The method and articles of the present invention are to be contrasted with ultrasonic welding and ultrasonically welded articles. In ultrasonic welding, vibration is imparted in a direction normal to the weld plane rather than in the plane of the weld, commonly using an ultrasonic horn. An ultrasonic horn is a relatively low energy source. Consequently, in contrast to frictional welding, ultrasonic welding is appropriate only for relatively small parts or for spot welding.
In order that the ultrasonic energy absorbed by the workpieces is sufficient to cause local melting, it is necessary to concentrate the energy flux. This is done by use of a projection, also known as an “energy director” on the mating surface of one of the workpieces. See for example U.S. Pat. No. 4,618,516.
An energy director or projection in ultrasonic welding is a means of concentrating the energy flux. In the design of parts to be ultrasonically welded, a single longitudinal energy director (small or large) is most commonly used (See “Specification for Standardized Ultrasonic Test Specimen for Thermoplastics”,
American Welding Society, AWS G
1.2
m/G
1.2: 1999
, An American National Standard
, part 5, page 3). Although more than one energy director may be used under special circumstances, it is not usually done, for the reason that more than one energy director disperses the already weak energy source and makes welding more difficult and slower. An exception may be found in U.S. Pat. No. 5,540,808 where dual energy directors were used to weld a rigid material to an easily melted, flexible material. As will be seen, the geometry, purpose and function of these energy directors differ from the geometry, purpose and function of the rectangular edge projections of the present invention.
It would be desirable to provide a method of welding thermoplastic articles to obtain high strength bonds under less than optimum conditions. It would be further desirable if this method were suitable for welding rigid, fiber reinforced thermoplastics. It would be yet further desirable if the method were suitable for forming welds of substantial dimension. Especially needed are strong, frictionally welded, rigid, fiber reinforced thermoplastic articles.
SUMMARY OF THE INVENTION
The invention provides a frictionally welded, reinforced thermoplastic article having improved strength. This is accomplished by restricting lateral flow of molten material out of the gap between the workpieces sufficient to maintain a molten pool of substantial depth from the beginning of melting to the onset of solidification. The restriction to lateral flow of material out of the gap between the workpieces is provided by dams (projections) of essentially rectangular cross-section at each lateral edge of one of the workpieces, while the other workpiece has a substantially flat mating surface.
Generally stated, the invention provides a frictionally welded thermoplastic article

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Frictionally welded thermoplastic articles having improved... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Frictionally welded thermoplastic articles having improved..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Frictionally welded thermoplastic articles having improved... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3221347

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.