Frictional vibration damper for downhole tools

Boring or penetrating the earth – With tool shaft detail – Helix or helically arranged structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C175S325300, C175S377000, C175S431000

Reexamination Certificate

active

06394198

ABSTRACT:

RELATED APPLICATIONS
None.
BACKGROUND OF THE INVENTION
This invention relates to a frictional vibration damper for use in connection with drill pipes, drill pipe sub assemblies, drill collars, bottom hole assemblies, and drill bits for drilling through subterranean formations. More particularly, this invention describes a vibration damper for downhole tools, particularly drill bits, that will protect cutting inserts and other components from damage due to axial and radial vibrations. These potentially damaging vibrations are produced by drill string flex and high torsional loading and uncontrolled unloading of downhole tools incident to drilling deep oil, gas, and geothermal wells.
Downhole tools such as the drill string which is made of drill pipe, subs, drill collars, bottom hole assemblies, and drill bits, collectively referred to as downhole tools in this application, produce strong vibrations during the drilling process. Excessive vibrations in one tool may adversely affect the performance of other tools as well as the entire drill string.
The dynamics of drilling deep wells are very complex and are affected in large part by the length of the drill string. The length of a drill string used in oil, gas, and geothermal well formation may total as much as 20,000 feet, or more, and is made up of coiled tubing or discrete lengths of drill pipe, drill collars, drill bits, and other downhole tools that are interconnected by tool joints. Each drill pipe is approximately 30 feet in length. Other downhole tools such as drill collars, sub and bottom-hole assemblies, fluid driven hammers, and mud motors vary in length from just a few feet to lengths similar to those of the drill pipe. A drill string weighs according to its length and diameter 100,000 pounds or more and is suspended from the surface by the drill rig. The weight of the drill string is used to drive the downhole tools forward during the drilling operation. This force is generally known as “weight on bit” and is controlled at the drill rig by constantly pulling up on the drill string. During drilling, the downhole tools are rotated at a rate of between 60 and 120 RPM, either by a high torque turntable on the floor of the drill rig or by a downhole hydraulic motor, known as a mud motor. Drilling fluid is pumped down the bore of the drill string and exhausted at the drill bit. As the drill bit penetrates the formation, it forms a borehole of a predetermined diameter, or gauge, which is larger than the circumference of the components of the drill string. The area differential between the gauge of the borehole and the circumference of the drill string is known as the annulus, and it provides a path for drilling fluid to return to the surface carrying the cuttings and other debris produced by the drill bit. A suspended drill string is constantly under tension and becomes very flexible behaving much like a spring during the drilling operation. Even though the weight on bit may be several thousand pounds, the drill string may flex longitudinally causing the bit to actually bounce on the bottom of the borehole. The friction along the surface of the drill string caused by the circulating drilling fluid, and the friction from downhole tools rubbing against the wall of borehole, when combined with the natural resistance of the formation to the cutting action of the drill bit, produces a high torsional load in the downhole tools. This load may actually cause the drill string to wind up like a spring. (If weight on bit and torque are not carefully controlled, the torsional load on the drill string will actually “twist off” the drill pipe.) As torque is constantly applied to the down hole tools, the torsional load builds up until the stored energy overcomes the resistance of the downhole tools, and they break loose accelerating to over 300 rpm. For this reason it has been observed that the rate of rotation of the drill string at the surface is not representative of the rate of rotation of the down hole tools at the bottom of the borehole. Because of the flexibility of the drill string, during periods of acceleration, the drill string and downhole tools actually radially and axially bounce, or vibrate, until the stored energy in the drill string dissipates, and the dynamic cycle of loading and unloading begins again. An analogy may be drawn to a capacitor and a resistor in an electronic circuit. The downhole tools, especially the drill bit, store torsional energy that will discharge violently unless controlled by a resistor.
Therefore, unless the stored torsional load in the downhole tools is damped, a violent discharge of energy will occur, manifesting itself as excessive vibrations causes excessive wear and damage to the downhole tools and may also result in borehole deviation. Therefore, it is desirable to develop means for damping vibrations by controlling the torsional loading and unloading in downhole tools.
One means that has been developed is described in U.S. Pat. No. 3,660,990, incorporated herein. This patent teaches the use of a sub assembly having a metallic sleeve slidably housed in splines within the casing. A rubber bush is provided so that when the drill bit receives a longitudinal shock the sleeve moves into the casing assembly and the rubber bush is deformed to absorb the shock. This tool is axisymmetric with the drill string within the borehole. It is not intended to ride on or rub against the walls of the borehole.
Vibrations in downhole tools result from complex forces acting on the tools simultaneously. These vibrations consist of axial, radial, and torsional movements all along the drill string. The preceding patent does not treat in full the complexity of tool vibrations and is limited to damping the longitudinal movement of the drill bit. Also, the mechanism restricts the flow of drilling fluid, requiring higher horsepower uphole and adds a complex, expensive component to the drill string that is prone to failure in the harsh environment downhole due to the invasive nature of abrasive drilling fluids pressurized to 10,000 psi downhole.
Another frictional damper in drilling tools is taught in U.S. Pat. No. 4,428,443, incorporated herein by this reference. Therein is disclosed a shock-absorbing tool having a number of open sections formed in a cylindrical member. The open sections are connected by a plurality of slots. As dynamic axial and torsional loads are applied to the drill string, the tool absorbs these loads through deflection of the tool such that the slots close and the stress is carried about the periphery of the open sections. This tool is deployed axisymmetrically with the drill string and is not intended to rub against the walls of the borehole. In fact, interference with the walls of the borehole would compromise the usefulness of this shock-absorbing tool.
Another frictional damper in drilling tools is taught in U.S. Pat. No. 4,901,806, incorporated herein. In this patent, a sub assembly is taught for positioning in the drill string above the bit. The mechanism provides for rotational torque to be transferred to the drill by a series of helical splines. Dual pistons with corresponding fluid chambers dampen axial forces while the helical splines decouple the torsional forces from axial vibrations to insure proper control of the drill bit. Like the previous frictional dampers, this tool is not intended to rub or ride on the borehole wall.
Another means for controlling bit vibrations is displayed in U.S. Pat. No. 5,755,297, incorporated herein. In this disclosure, lugs or pads are preinstalled in the arms of a roller cone bit as an aid to stabilize the bit. The outside dimensions of the stabilizer pad are substantially equal to, or less than, the desired radius for the borehole. This disclosure teaches that the stabilizer pad may contact the borehole wall in order to stabilize the bit. However, the preferred examples given describe an annulus between the exterior of the stabilizer pad and wall of the borehole in order to avoid sticking; therefore, it is evident from these examples that constant con

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Frictional vibration damper for downhole tools does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Frictional vibration damper for downhole tools, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Frictional vibration damper for downhole tools will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2864215

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.