Friction transmission with axial loading and a radiolucent...

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S429000, C600S567000

Reexamination Certificate

active

06400979

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention pertains to a method and system for radiological image guidance in percutaneous surgery. The invention further pertains to a friction transmission mechanism with axial loading.
2. Description of the Related Art
As an alternative to traditional open surgery, percutaneous surgery has been found to significantly reduce morbidity and post-operative recovery time.
However, percutaneous needle access of the surgical target may be difficult, and usually requires an extensive amount of experience and skill on the part of the surgeon. The above problem is exacerbated by the fact that prior art radiological image guidance techniques and associated imaging devices do not provide effective three dimensional information to the surgeon regarding needle insertion.
In order to overcome the above problem, several robotic systems have been proposed to date to assist in needle placement.
According to one solution, a stereopair of two x-ray views registered to a common fiducial system having an instrumented passive linkage with five degrees of freedom (or a “5DOF instrumented passive linkage”) is used. The stereopair of views is used to position a passive needle guide. See Potamianos, P., Davies, B. L. and Hibberd, R. D., “IntraOperative Imaging Guidance for Keyhole Surgery Methodology and Calibration”, Proceedings for the First International Symposium on Medical Robotics and Computer Assisted Surgery, Pittsburgh, Pa., pp. 98-104 (1994); see also Potamianos, P., Davies, B. L. and Hibberd, R. D., “Intra-Operative Imaging Guidance for Keyhole Surgery Methodology and Calibration”, Proceedings for the First International Symposium on Medical Robotics and Computer Assisted Surgery, Baltimore, Md., pp. 156-164 (1995). It has further been proposed to provide an active needle guide in the form of an active robot instead of the passive needle guide mentioned above. See Bzostek, A., Schreiner, S., Barnes, A. C., Cadeddu, J. A., Roberts, W., Anderson, J. H., Taylor, R. H., Kavoussi, L. R., “An Automated system for Precise Percutaneous Access of the Renal Collecting System”, submitted for review to the Proceedings of the First Joint conference of CVRMed and MRCAS, Grenoble, France (1997).
Although the above systems successfully address issues of image-to-robot registration and provide convenient means for defining target anatomy, they can nevertheless be expensive and cumbersome in an operating room environment. Moreover, for the implementation of the active robot mentioned above, the radiological profile of the end-effector, or needle, may interfere with a clear view of the target.
Percutaneous renal access procedures are often performed in radiology suites, where sophisticated imaging devices are available. Performing percutaneous surgery in the operative room has the advantage of significantly reducing cost, improving availability, and allowing the surgeon to have full control over the entire procedure. The imaging commonly available in the operating room involves uni-planar fluoroscopy provided by a “C-arm” imaging device, as described for example in U.S. Pat. No. 5,549,439.
Percutaneous surgery in the form of manual renal access normally proceeds according to a system of superimposed registration, which is described below.
The urologist positions a conventional C-arm imaging device over the renal collecting system, chooses the target calyx of the collecting system and the skin insertion site. The C-arm of the imaging device is then positioned, or “frogged”, to register or align the desired skin insertion site and the target calyx so that they are superimposed in the image generated by the C-arm imaging device. The alignment of the desired skin insertion site and the target calyx defines the trajectory to be followed by the needle during its insertion, or the needle trajectory. Once the needle trajectory has been determined through a positioning of the C-arm, the C-arm is locked against changing its orientation, thereby resulting in an effective memorization of the needle trajectory. Next, the urologist manually holds the needle in position on the desired skin insertion site and in the direction of the needle trajectory memorized by the locked orientation of the C-arm. The needle, the insertion site and the target calyx are, as a result, superimposed as a single point on the image generated by the C-arm imaging device. Thereafter, the urologist manually inserts the needle into the insertion site while viewing the superimposed image to maintain the prescribed alignment along the needle trajectory.
A disadvantage of the above procedure is that it does not provide a simultaneous lateral view of the renal collecting system. The reason for the above is that the C-arm imaging device according to the mentioned procedure is used to maintain axial needle alignment, and can therefore not provide needle depth imagery. Therefore, according to the foregoing procedures, to gain access to the renal collecting system, the depth of insertion must be determined both as a function of the surgeon's experience and on a trial and error basis.
Additionally, the foregoing systems do not provide an effective needle driver which is both simple in its mechanical design and which exhibits a space-saving, miniaturized construction while allowing an efficient force and power transmission to the needle. Conventional needle driving techniques are based on holding the needle head and not the barrel of the needle, the motion of the needle being induced by moving the support of the needle head. The above technique does not allow radiolucent constructions. Moreover, supporting the needle from its head tends to disadvantageously maximize the unsupported length of the needle, thus facilitating needle deflection under the insertion force. Examples of such needle drive systems based on holding the needle head are included in the publication by Bzostek et al.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a simple and effective method and system for radiological image guidance in percutaneous surgery which overcome the disadvantages of the prior art.
The above object, together with others to become apparent as the description progresses, is achieved by the provision of a method for performing radiological-image-guided percutaneous surgery with a system which includes a radiological image generating device for generating an image of a target anatomy of a patient to be operated on, and a needle insertion mechanism disposed adjacent the image generating device and having a needle adapted to be inserted into the patient. The method comprises the steps of: determining a needle trajectory of the needle by positioning the image generating device for aligning, in the image generated by the image generating device, a desired skin insertion site of the patient with a target region of the target anatomy; locking the needle in a direction of the needle trajectory; and repositioning the image generating device to obtain a lateral view of the needle trajectory for viewing an insertion depth and path of the needle during its insertion into the patient.
The invention further pertains to a system for performing the method described above, comprising: a radiological image generating device for generating an image of a target anatomy of a patient to be operated on for determining a needle trajectory to be followed through the patient, the image generating device being positionable to generate an image of the target anatomy from a plurality of directions; and a needle insertion mechanism disposed adjacent the image generating device and having a needle adapted to be inserted into the patient and to be locked in a direction of the needle trajectory.
According to one aspect of the invention, the needle insertion mechanism comprises both a needle and a needle driver, which includes: a first rotational component having a first contact face and being adapted to rotate about a rotational axis; and a second rotational component coaxial with the first rotational co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Friction transmission with axial loading and a radiolucent... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Friction transmission with axial loading and a radiolucent..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Friction transmission with axial loading and a radiolucent... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2944778

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.