Friction stir welding using a superabrasive tool

Metal fusion bonding – Process – Using dynamic frictional energy

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C228S002100, C228S002300, C228S113000, C228S114500

Reexamination Certificate

active

06648206

ABSTRACT:

BACKGROUND
1. The Field of the Invention
This invention relates generally to friction stir welding wherein heat for creating a weld is generated by plunging a rotating pin of a tool into a workpiece. More specifically, the present invention relates to a new tool that is used in a friction stir welding process that enables the present invention to weld materials that are not functionally weldable using state of the art friction stir welding processes and tools, said materials including ferrous alloys such as stainless steel, and higher melting point super alloys that contain only small amounts of or no ferrous materials at all.
2. Background of the Invention
Friction welding has been used in industry for years. It is a solid-state process that yields large economic benefits because it avoids many problems associated with rapid solidification of molten material that occurs in traditional fusion welding processes.
One example of friction welding occurs when the ends of two pipes are pressed together while one pipe is rigidly held in place, and the other is pressed against it and turned. As heat is generated by friction, the ends of the pipes become plasticized. By quickly stopping rotation of the pipes, the two pipes fuse together. Note that in this case, the frictional heating is caused by the relative motion of the two parts to be joined.
In contrast,
FIG. 1
is a perspective view of a tool being used for friction stir butt welding that is characterized by a generally cylindrical tool
10
having a shoulder
12
and a pin
14
extending outward from the shoulder. The pin
14
is rotated against a workpiece
16
until sufficient heat is generated, wherein the pin of the tool is plunged into the plasticized workpiece material. The workpiece
16
is often two sheets or plates of material that are butted together at a joint line
18
. The pin
14
is plunged into the workpiece
16
at the joint line
18
. The frictional heat caused by rotational motion of the pin
14
against the workpiece material
16
causes the workpiece material to soften without reaching a melting point. The tool
10
is moved transversely along the joint line
18
, thereby creating a weld as the plasticized material flows around the pin from a leading edge to a trailing edge. The result is a solid phase bond
20
at the joint line
18
that is generally indistinguishable from the workpiece material
16
.
The prior art is replete with friction stir welding patents that teach the benefits of using the technique to obtain welds that have beneficial characteristics over contemporary fusion welding processes. These benefits include low distortion in long welds, no fumes, no porosity, no splatter, and excellent mechanical properties regarding tensile strength. Furthermore, the process has the advantage of using a non-consumable tool, no need for filler wire, no need for gas shielding, and a tolerance for imperfect weld preparations such as the presence of oxide in the weld region. The process is especially useful for preventing significant heat damage or otherwise altering the properties of the original material being welded.
However, it has long been a desire of industry to be able to weld materials that are presently functionally unweldable for friction stir welding. Thus, while friction stir welding is a very advantageous technique for welding non-ferrous alloys such as aluminum, brass and bronze, there has been no tool that is capable of functionally welding materials having higher melting points. It should be understood that functionally weldable materials are those that are weldable using friction stir welding in more than nominal lengths, and without destroying the tool.
Unfortunately, fusion welding alters or damages the alloy at the weld, thereby compromising the weld as a result of the defects or adverse phases which form in the weld during the welding process. In some cases, the non-metallic reinforcement material which has been joined with the original workpiece material to create the alloy is depleted at the weld. The result is a weld that has properties and characteristics which are different from the unaltered areas of the original workpiece material.
Until now, it has been the nature of friction stir welding that using a conventional friction stir welding tool or probe is worn down significantly so as to prevent functional welding of materials such as MMCs, ferrous alloys, and superalloys. Most tools simply do not work at all in MMCs, ferrous alloys, and superalloys. If a conventional tool could begin friction stir welding, the wear would be so significant that a probe would be torn apart after only a short distance. For example, some alloys will cause wear on a probe such that it can no longer function after welding for a distance of only inches.
Unfortunately, it is generally the case that it is not possible to simply insert a new tool and begin the friction stir welding process where the previous probe failed. If the weld is not continuous and uninterrupted, it is useless because of mechanical weakness. Furthermore, a portion of the tool is typically left behind in the workpiece material, also contributing to the mechanical weakness.
Therefore, it would be an advantage over the prior art to provide a new tool for use with the friction stir welding process that enables longer continuous and uninterrupted welding runs (functional welding) of materials that will cause a conventional tool to fail after a short distance. It would also be an advantage over the prior art if the new tool made it possible to friction stir weld materials that were previously too difficult to weld with conventional friction stir welding tools. It would also be an advantage to provide a tool that would enable friction stir welding with conventional workpiece materials, while exhibiting improved wear characteristics for the tool.
A first class of materials that would be desirable to friction stir weld but are functionally unweldable with conventional tools are known as metal matrix composites (MMCs). An MMC is a material having a metal phase and a ceramic phase. Examples of the ceramic phase include silicon carbide and boron carbide. A common metal used in MMCs is aluminum.
MMCs have desirable stiffness and wear characteristics, but they also have a low fracture toughness, thereby limiting applications. A good example of a use for MMCs is in disk brake rotors on vehicles, where stiffness, strength and wear provide advantages over present materials, and where the more brittle nature is generally not an issue. The MMC makes the rotor lighter than cast-iron, and the ceramic phase such as silicon carbide enables greater wear resistance.
Other important applications for MMCs include, but should no be considered limited to, drive shafts, cylinder liners, engine connecting rods, aircraft landing gear, aircraft engine components, bicycle frames, golf clubs, radiation shielding components, satellites, and aeronautical structures.
A second class of materials that would be desirable to friction stir weld, and which have much broader industrial applications, are ferrous alloys. Ferrous alloys include steel and stainless steel. Possible applications are far-ranging, and include the shipbuilding, aerospace, railway, construction and transportation industries. The stainless steel market alone is at least five times greater than the market for aluminum alloys. It has been determined that steels and stainless steels represent more than 80% of welded products, making the ability to friction stir weld highly desirable.
Finally, a third class of materials that would be desirable to friction stir weld, have broad industrial applications, have a higher melting point than ferrous alloys, and either have a small amount of iron or none, are the super alloys. Superalloys are nickel-, iron-nickel, and cobalt-base alloys generally used at temperatures above 1000 degrees F. Additional elements commonly found in superalloys include, but are not limited to, chromium, molybdenum, tungsten, aluminum, titanium, niobium, tantalum, and rhenium.
It is noted th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Friction stir welding using a superabrasive tool does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Friction stir welding using a superabrasive tool, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Friction stir welding using a superabrasive tool will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3117853

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.