FRET protease assays for clostridial toxins

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving hydrolase

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S300000, C436S546000

Reexamination Certificate

active

08048643

ABSTRACT:
The present invention provides clostridial toxin substrates useful in assaying for the protease activity of any clostridial toxin, including botulinum toxins of all serotypes as well as tetanus toxins. A clostridial toxin substrate of the invention contains a donor fluorophore; an acceptor having an absorbance spectrum overlapping the emission spectrum of the donor fluorophore; and a clostridial toxin recognition sequence that includes a cleavage site, where the cleavage site intervenes between the donor fluorophore and the acceptor and where, under the appropriate conditions, resonance energy transfer is exhibited between the donor fluorophore and the acceptor.

REFERENCES:
patent: 5693476 (1997-12-01), Scheller
patent: 5804604 (1998-09-01), Frankel et al.
patent: 5962637 (1999-10-01), Shone et al.
patent: 5965699 (1999-10-01), Schmidt et al.
patent: 5981200 (1999-11-01), Tsien et al.
patent: 5989545 (1999-11-01), Foster et al.
patent: 6043042 (2000-03-01), Shone et al.
patent: 6169074 (2001-01-01), Montal et al.
patent: 6197534 (2001-03-01), Lakowicz et al.
patent: 6197928 (2001-03-01), Tsien et al.
patent: 6221355 (2001-04-01), Dowdy
patent: 6469154 (2002-10-01), Tsien et al.
patent: 6504006 (2003-01-01), Shine et al.
patent: 6762280 (2004-07-01), Schmidt et al.
patent: 7332567 (2008-02-01), Steward et al.
patent: 7399607 (2008-07-01), Williams et al.
patent: 7495069 (2009-02-01), Steward et al.
patent: 7638294 (2009-12-01), Williams et al.
patent: 7709608 (2010-05-01), Steward et al.
patent: 7718766 (2010-05-01), Steward et al.
patent: 7740868 (2010-06-01), Steward et al.
patent: 7749514 (2010-07-01), Steward et al.
patent: 7749759 (2010-07-01), Fernandez-Salas et al.
patent: 7811584 (2010-10-01), Steward et al.
patent: 7838260 (2010-11-01), Steward et al.
patent: 7846722 (2010-12-01), Williams et al.
patent: 7897157 (2011-03-01), Steward et al.
patent: 7993656 (2011-08-01), Steward et al.
patent: 7998749 (2011-08-01), Gilmore et al.
patent: 2003/0027752 (2003-02-01), Steward et al.
patent: 2003/0077685 (2003-04-01), Schmidt et al.
patent: 2003/0143650 (2003-07-01), Steward et al.
patent: 2003/0143651 (2003-07-01), Steward et al.
patent: 2003/0219462 (2003-11-01), Steward et al.
patent: 2004/0072270 (2004-04-01), Fernandez-Salas et al.
patent: 2004/0115727 (2004-06-01), Steward et al.
patent: 2004/0146963 (2004-07-01), Schmidt et al.
patent: 2006/0063221 (2006-03-01), Williams et al.
patent: 2009/0042231 (2009-02-01), Steward et al.
patent: 2010/0081155 (2010-04-01), Williams et al.
patent: 2010/0081156 (2010-04-01), Williams et al.
patent: 2010/0081157 (2010-04-01), Steward et al.
patent: 2010/0081158 (2010-04-01), Steward et al.
patent: 2010/0151494 (2010-06-01), Steward et al.
patent: 2010/0160609 (2010-06-01), Fernandez-Salas et al.
patent: 2011/0070621 (2011-03-01), Steward et al.
patent: 2011/0189162 (2011-08-01), Ghanshani et al.
patent: 2082770 (1993-08-01), None
patent: WO 95/33850 (1995-12-01), None
patent: WO 97/34620 (1997-09-01), None
patent: WO 99/29721 (1999-06-01), None
patent: WO 99/55899 (1999-11-01), None
patent: WO 00/34308 (2000-06-01), None
patent: WO 01/18038 (2001-03-01), None
patent: WO 02/25284 (2002-03-01), None
patent: WO 03/020948 (2003-03-01), None
patent: WO 2004/029576 (2004-04-01), None
patent: WO 2004/031355 (2004-04-01), None
patent: WO 2004/031773 (2004-04-01), None
patent: WO2005/076785 (2005-08-01), None
Anne et al., “High-Throughput Fluorogenic Assay for Determination of Botulinum Type B Neurotoxin Protease Activity,”Analytical Biochemistry291:253-261 (2001).
Adams et al., “New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: Synthesis and biological applications,”J. Am. Chem. Soc. 124(21):6063-6076 (2002).
Ausubel et al.Current Protocols in Molecular Biology, John Wiley & Sons, Inc.: New York (2000) 10.15, Supplement 14.
Ausubel et al.,Current Protocols in Molecular Biology, John Wiley & Sons, Inc.: New York (2000), Chapter 16.6.
Ausubel et al.,Current Protocols in Molecular Biology, John Wiley & Sons, Inc.: New York (2000), Chapter 16.7.
Autofluorescent Proteins,AFP's Applications Manual, pp. 1-25 (Nov. 1998).
Bark, “Structure of the chicken gene for SNAP-25 reveals duplicated exon encoding distinct isoforms of the protein ,”J. Mol. Biol. 233(1):67-76 (1993).
BD Biosciences Clontech Product List, BD Living Colors™ Fluorescent Proteins, pp. 1-9 (Apr. 2004).
Blasi et al., “Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin,”EMBO J. 12(12):4821-4828 (1993).
Bronstein et al., “Chemiluminescent and bioluminescent reporter gene assays,”Anal. Biochem. 219:169-181 (2001).
Burnett et al., “Novel small molecule inhibitors of botulinum neurotoxin A metalloprotease activity,”Biochem. Biophys. Res. Commun. 310(1):84-93 (2003).
CALBIOCHEM, “SNAPtide® Botulinum Toxin A Substrate, Fluorogenic,” www.calbiochem.com, printed on Dec. 17, 2002.
Catsicas et al., “Expression of a conserved cell-type-specific protein in nerve terminals coincides with synaptogenesis ,”Proc. Natl. Acad. Sci. U.S.A. 88(3):785-789 (1991).
Chen and Selvin, “Thiol-reactive Luminescent Chelates of Terbium and Europium,”Bioconjugate Chem. 10(2):311-315 (1999).
Chen, Jiyan, et al.,Thiol-Reactive Luminescent Chelates of Terbium and Europium, Bioconjugate Chem., 1999, 10, pp. 311-315.
CIS Bio International, “Homogeneous Time Resolved Fluorescence—Methodological aspects,” Application Note 1, pp. 1-4, CIS bio international: France (2003).
Clark et al., “A novel peptide designed for sensitization of terbium (III) luminescence,”FEBS Lett. 333(1-2):96-98 (1993).
Clark et al., “A study of sensitized lanthanide luminescence in an engineered calcium-binding protein,”Anal. Biochem. 210(1):1-6 (1993).
Clegg, “Fluorescence resonance energy transfer,”Curr. Opin. Biotechnol. 6(1):103-110 (1995).
Collins, “Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences,”Proc. Natl. Acad. Sci. U.S.A. 99(26):16899-16903 (2002).
Cooper and Sammes, “Synthesis and spectral properties of a new luminescent europium(III) terpyridyl chelate,”J. Chem. Soc., Perkin Trans. 28:1695-1700 (2000).
Cornille et al., “Solid-Phase Synthesis, Conformational Analysis and In Vitro Cleavage of Synthetic Human Synaptobrevin II 1-93 by Tetanus Toxin L Chain,”Eur. J. Biochem. 222:173-181 (1994).
Criado et al. “A single amino acid near the C terminus of the synaptosomeassociated protein of 25 kDa (SNAP-25) is essential for exocytosis in chromaffin cells,”Proc. Natl. Acad. Sci. U.S.A. 96(13):7256-7261 (1999).
Deloukas et al., “The DNA sequence and comparative analysis of human chromosome 20,”Nature414(6866):865-871 (2001).
Diamandis and Christopoulos, “Europium chelate labels in time-resolved fluorescence immunoassays and DNA hybridization assays,”Anal. Chem. 62(22):1149A-1157A (1990).
Diamandis, “Immunoassays with time-resolved fluorescence spectroscopy: Principles and applications,”Clin. Biochem. 21(3):139-150 (1988).
Ekong et al., “Recombinant SNAP-25 is an Effective Substrate forClostridium botulinumType A Toxin Endopeptidase Activity in vitro,”Microbiology143:3337-3347 (1997).
Ekong et al., “Recombinant SNAP-25 is an Effective Substrate forClostridium botulinumType A Toxin Endopeptidase Activity in vitro,”Microbiology143:3337-3347 (1997).
Ellenberg et al., “Two-color green fluorescent protein time-lapse imaging,”Biotechniques25(5):838-842, 844-846 (1998).
Enzelberger et al., “Designing new metal affinity peptides by random mutagenesis of a natural metal-binding site,”J. Chromatogr. A. 898(1):83-94 (2000).
Fernandez-Salas et al, “Plasma membrane localization signals in the light chain of botulinum neurotoxin”, PNAS, vol. 101, No. 9, Mar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

FRET protease assays for clostridial toxins does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with FRET protease assays for clostridial toxins, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and FRET protease assays for clostridial toxins will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4303675

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.