Freshly precipitated CuO as catalyst for the trialkoxysilane...

Organic compounds -- part of the class 532-570 series – Organic compounds – Silicon containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06380414

ABSTRACT:

The present invention relates to a process for the preparation of trialkoxysilanes by reacting silicon metal with an alcohol over a copper catalyst, in particular over copper oxide, and the use of copper oxide in a process for the preparation of trialkoxysilanes.
Trialkoxysilanes, composed of a silicon atom to which three alkoxy groups and a hydrogen atom are bonded, are very reactive and unstable. They therefore undergo numerous reactions, such as additions, copolymerizations, copolycondensations and disproportionation reactions with other organic compounds, and a number of very useful substances being obtained. These in turn are used as starting materials for silane coupling reagents, coating materials or heat-resistant finishes or for obtaining monosilanes in high purity for semiconductor applications.
The trialkoxysilanes can be prepared by the direct action of silicon metal with the corresponding alcohols at from 150 to 500° C. using copper-containing catalysts (direct synthesis). In general, the copper-containing silicon catalyst material is suspended in an inert, liquid reaction medium and reacted at from 150 to 300° C. by passing in liquid or gaseous alcohol to give the desired trialkoxysilanes. Regarding the conversion of silicon metal and the selectivity of the trialkoxysilane relative to the tetraalkoxysilane present as a byproduct, copper(I) chloride has proven to be a particularly suitable catalyst.
M. Okamoto et al., Catalysis Lett. 33 (1995), 421 to 427 relates to an investigation of the reaction of silicon metal with methanol in a silicon fixed-bed reactor over various copper catalysts. The copper catalysts copper(I) oxide, copper(II) oxide, copper(II) acetate, copper(II) formate, copper(II) phthalate, copper(II) oxalate and copper(I) chloride were compared. The highest silicon conversions (88%) and selectivities for trimethoxysilane relative to tetramethoxysilane (98%) were found for copper(I) chloride.
When copper(I) chloride is used, however, hydrochloric acid is formed and necessitates the use of expensive, corrosion-resistant materials for the reactors used. Furthermore, the presence of chloride in the reaction mixture and in the product leads to a reduction in the yield of trialkoxysilane since the secondary reaction of trialkoxysilane with alcohols to give tetraalkoxysilane is catalyzed by chloride. The hydrochloric acid formed when copper(I) chloride is used as a catalyst can, when the alcohol used is methanol, react with the methanol to give methyl chloride and water, with the result that methanol as a starting material is lost for the trialkoxysilane synthesis.
For these reasons, the use of halogen-free catalysts is desirable.
JP-A-05170773 relates to the preparation of trialkoxysilanes by reacting silicon metal with alcohol in the presence of copper alkoxides. Halide-free products are obtained. The selectivity of this reaction is from 91 to 92% but the conversion of silicon is only from 21 to 32.4%.
An increase in the selectivity and in the silicon conversion is achieved in this reaction according to JP-A-06065257 by using a copper alkoxide catalyst in combination with a metal halide. However, the presence of halide in the reaction mixture and in the reaction product has the abovementioned disadvantages.
EP-A-0285133 relates to the preparation of trialkoxysilanes by reacting silicon metal with alcohols, a copper(II) hydroxide catalyst being used. In this reaction, silicon conversions of from about 80 to 90 mol % are achieved and the amount of tetraalkoxysilanes in the reaction mixture is from about 5 to 10 mol %, based on the silicon.
JP-A-10168084 relates to the preparation of trialkoxysilanes by reacting silicon metal and alcohol over a copper(II) oxide catalyst which has a water content of <3000 ppm. In the preparation of triethoxysilane, a trialkoxysilane selectivity coefficient of 85.2 mol % and a silicon conversion of 91% by weight are achieved. However, the low water content of the catalyst used may require a thermal pretreatment of the catalyst and hence an additional reaction step.
It is an object of the present invention to provide a copper catalyst for the trialkoxysilane synthesis, which catalyst permits high selectivity for trialkoxysilane relative to tetraalkoxysilane and high conversions without the presence of halide being necessary, and which is active in the case of water contents of the catalyst in the percent range. Time-consuming preactivation for generating a catalytically active species is to be dispensed with.
We have found that this object is achieved by a process for the preparation of trialkoxysilanes by reacting silicon metal with an alcohol in an inert solvent in the presence of a copper catalyst.
In the novel process, the copper catalyst contains copper(II) oxide having a BET surface area of ≧10 m
2
/g.
Preferably, the copper(II) oxide used in the novel process has a BET surface area of from 10 to 50, particularly preferably from 20 to 40, m
2
/g.
The BET surface area was determined according to DIN 66131.
By means of the novel process, high silicon conversions and very good selectivities for trialkoxysilane in relation to tetraalkoxysilane are achieved. In general, silicon conversions at the end of the reaction of >75, preferably from 80 to 90, particularly preferably from 82 to 90, mol % are achieved. The silicon conversion is determined according to the following equation: Si[mol] in the product/amount of silicon used.
The selectivity for trialkoxysilane relative to tetraalkoxysilane is in general greater than 80, preferably from 85 to 90, mol %. The selectivity is determined according to the following equation: trialkoxysilane[mol]/(trialkoxysilane[mol]+tetraalkoxysilane[mol]·100. Activation of the catalyst used according to the invention by reduction or by a thermal treatment at high temperatures is not required.
The water content of the copper(II) oxides used according to the invention may be in general greater than 5% by weight. The water content of the copper(II) oxide catalyst was not found to have any substantial influence on the results of the reaction.
The copper(II) oxide used according to the invention is preferably freshly precipitated copper(II) oxide. Particularly preferably, the freshly precipitated copper(II) oxide essentially comprises acicular platelets having a length of ≦200 nm. Preferably, the acicular platelets have a length of from 20 to 200 nm, particularly preferably from 20 to 100 nm. The particle size was determined by means of transmission electron microscopy (TEM).
The particle size distribution of copper(II) oxide used according to the invention is in general very narrow.
In a preferred embodiment, the freshly precipitated copper(II) oxide is obtained by reaction of copper(II) salts with sodium hydroxide solution, KOH or Ca(OH)
2
and subsequent drying, copper(II) oxide being obtained as a mixture with foreign salts.
Foreign salts are to be understood as meaning the salts formed as byproducts in the reaction, corresponding to the copper salts used.
Usually, the copper(II) oxide thus prepared has a foreign salt content of in general from 0 to 20, preferably from 0 to 5, % by weight. The foreign salt generally does not interfere with the reaction of silicon metal with alcohol to give the trialkoxysilane. However, it should be noted that, when the copper(II) salts used are copper chlorides, sodium chloride is obtained as a foreign salt, but usually in very minor amounts, which plays no role with regard to corrosion problems.
Preferably used copper(II) salts are copper(II) chloride, CuSO
4
, CuBr
2
, Cu(NO
3
)
2
, copper acetate, CuCO
3
, Cu(CN)
2
and/or basic copper carbonate, copper(II) chloride and CuSO
4
being particularly preferred.
It is possible to control the foreign salt content in the copper(II) catalyst used in the novel process by washing the freshly precipitated copper(II) oxide with a suitable solvent before drying the product. Thus, a product essentially free of foreign salt can be obtained by washing the freshly preci

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Freshly precipitated CuO as catalyst for the trialkoxysilane... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Freshly precipitated CuO as catalyst for the trialkoxysilane..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Freshly precipitated CuO as catalyst for the trialkoxysilane... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2888845

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.