Frequency multiplexed flux locked loop architecture...

Electricity: measuring and testing – Magnetic – Magnetometers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C505S846000

Reexamination Certificate

active

06356078

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to electronic read-out devices, and, more particularly, to an apparatus for providing frequency multiplexing of multiple flux locked loops in systems comprising an array of superconducting quantum interference devices (DC SQUIDs).
2. Description of the Prior Art
DC SQUIDs are small, cryogenically-cooled magnetic sensors that comprise a ring of superconducting material interrupted by two Josephson junctions. DC SQUIDs are designed to detect changes in magnetic flux, and, when suitably biased with a small DC current, will exhibit a magnetic flux sensitivity noise floor of approximately 1×10
−6
&phgr;
0
/ Hz for low temperature devices that operate at 4 degrees Kelvin (typically cooled by liquid Helium), and approximately 7×10
−6
&phgr;
0
/ Hz for high temperature devices that operate at 77 degrees Kelvin (typically cooled by liquid Nitrogen). Furthermore, DC SQUIDs exhibit a transfer function that converts magnetic flux into a periodic electrical output signal.
Although a single DC SQUID is sufficient for some applications, there are applications in which it is desirable to employ multiple DC SQUIDs. For example, in non-destructive test and evaluation applications a linear or rectangular array of DC SQUIDs using a sinusoidal excitation functions as a phased array in which the usable DC SQUID measurement directionality can be narrowed and lengthened to improve lateral resolution and increase depth of penetration. While it is possible to simply link multiple single-DC SQUID systems to form such an array, this arrangement is highly undesirable in terms of both redundant componentry and inefficient operation.
One problem arises due to the number of connections between the DC SQUIDs and their associated room temperature read-out electronics. In a typical single-DC SQUID system, there are at least two wire pairs or transmission lines connecting each DC SQUID to its associated room temperature electronics. Thus, for example, in an array formed of ten single-DC SQUID systems, there would be at least twenty of these connections. Such a large number of connections causes high heat transfer to the cryogenics, increases system complexity, and reduces reliability. Attempts at multiplexing DC SQUID arrays used time multiplexing with switches, which involves increased complexity and other problems, such as switching transients.
Another problem involves the amount of redundant componentry—each DC SQUID sensor requires its own complete flux locked loop (FLL) for providing feedback and maintaining a stable operating point.
For these reasons, magnetic measurement systems comprising arrays of DC SQUIDs are complex, costly, and inefficient.
SUMMARY OF THE INVENTION
The frequency multiplexed flux locked loop architecture of the present invention includes essential enabling technology which makes the operation of multi-DC SQUID systems more efficient, economical, and practical. The present invention comprises a system with continuous signals and no time switching devices and therefore none of the associated problems found in the prior art. The present invention makes use of the high bandwidth achieved by the read-out electronics disclosed in the copending patent application entitled “A Fast Flux Locked Loop”, Ser. No. 09/596,135, filed Jun. 16, 2000, and the copending patent application entitled “Read-Out Electronics for DC SQUID Magnetic Measurements”, Ser. No. 09/596,190, filed Jun. 16, 2000.
Another novel feature of the present invention is that each radio-frequency (RF) flux locked loop (FLL) and its corresponding DC SQUID operate on a different flux modulation frequency (f
1
through f
N
). This allows for a 1×N architecture which reduces from 2N to N+1 the number of required cable connections between the cryogenic DC SQUIDs and their associated room temperature read-out electronics. Thus, for example, a system comprising an array of ten DC SQUIDs, which previously would have required at least twenty cable connections, with their associated heat transfer and added complexity, now requires only eleven connections. Within practical limits, any number of DC SQUIDs can be connected together in a series array using the architecture of the present invention.
While the term 1×N implies linearity, this only applies electrically and does not mean that the physical DC SQUID array must be linear. Furthermore, the 1×N architecture can be paralleled in order to increase array size. The frequencies f
1
, f
2
, . . . fN can be repeated in M parallel systems without any interference between the 1×N subsystems. A rectangular array, or an extended linear array, can be easily constructed in this way. For example, a system comprising 150 DC SQUIDs can be arranged as a 15×10 array. This system would be composed of M=15 parallel copies of the 1×N architecture, each with N=10. Frequencies f
1
, f
2
, . . . fN would be the same for each parallel system so that only ten frequencies need be used in implementing the entire array. The total number of SQUID connections would be 15×(10+1)=165, which is 135 connections (45%) less than the 15×(2×10)=300 connections required for a non-multiplexed system.
Yet another novel feature of the present invention is that it reduces flux locked loop component redundancy by sharing certain components among the DC SQUIDs, thereby reducing complexity, cost, and size of the apparatus as a whole. Thus, while each DC SQUID still requires some dedicated, frequency-specific flux locked loop componentry, other non-frequency-specific flux locked loop component functions are performed by shared or common components.
These and other important aspects of the present invention are more fully described in the section entitled Detailed Description, below.


REFERENCES:
patent: 4004217 (1977-01-01), Giffard
patent: 4389612 (1983-06-01), Simmonds et al.
patent: 4851776 (1989-07-01), Goto et al.
patent: 5095270 (1992-03-01), Ludeke
patent: 5173659 (1992-12-01), Chiba et al.
patent: 5231353 (1993-07-01), Nakayama et al.
patent: 5355085 (1994-10-01), Igarashi et al.
patent: 5532592 (1996-07-01), Colclough
Clarke, J., SQUID Sensors: Fundamentals, Fabrication and Applications, H. Weinstock ed., Kluwer Academic Press Dordrecht, 1996, pp. 1-62.
Drung, D., Advanced SQUID Read-Out Electronics in SQUID Sensors: Fundamentals, Fabrication and Applications, H. Weinstock, ed., Kluwer Academic Press, Dordrecht, 1996, pp. 63-116.
Kung, P.J., Bracht, R.R., Flynn, E.R., Lewis, P.S., A direct current superconducting quantum interference device gradiometer with a digital signal processor controlled flux-locked loop and comparison with a conventional analog feedback scheme, Rev. Sci. Instrum. 57 (1), Jan. 1996, pp. 222-229.
Kraus Jr., R.H., Bracht, R., Flynn, E.R., Jia, Qu., Maas, P., Reagor, D., and Stettler, M., A digital flux-locked loop for high temperature SQUID magnetometer and gradiometer systems with field cancellation, to be published.
Wellstood, F., Heiden, C., and Clarke, J., Integrated dc SQUID magnetometer with a high slew rate, Rev. Sci. Instrum. 55 (6), Jun. 1984, pp. 952-957.
Matlashov, A., Kraus, Jr., R.H., Espy, M., Ruminer, P., Atencio, L., Garachtchenko, A., Sequential Read-out Architecture for Multi-Channel SQUID Systems, IEEE Transactions on Applied Superconductivity, vol. 9, No. 2, Jun. 1999, pp. 3672-3675.
Ruthroff, C.L., Some Borad-Band Transformers, Proceedings of the IRE, Aug., 1959, pp. 1337-1342.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Frequency multiplexed flux locked loop architecture... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Frequency multiplexed flux locked loop architecture..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Frequency multiplexed flux locked loop architecture... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2830974

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.