Freight rail wheelset handling and storage protection

Freight accommodation on freight carrier – Particular article accommodation – Grouped

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C410S036000, C410S039000, C410S043000, C410S155000, C206S443000, C206S586000, C248S068100

Reexamination Certificate

active

06572313

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of handling and storage of railway freight wheelsets. This is for use by North American (Canada, United States and Mexico) railroads, freight wheelsets suppliers, wheel shops and transport organizations that move the wheelsets across the North American continent.
BACKGROUND OF THE INVENTION
Reference: See Appendix FREIGHT WHEELSET ROLLER BEARING DAMAGE—TRANSPORTER AND STORAGE PROLBEM report actual AAR rules and regulations and diagrams of present situation.
Present Wheel Transporters
In the same way that automobiles go through tires, railroad cars go through wheelsets. Each year the seven biggest class 1 North American railroads replace about 300,000 freight wheelsets. A wheelset is composed of one axle and one wheel and roller bearing at each end of the axle. Equipment personnel at various line points across North America inspect wheelsets on trains and replace bad order (damaged) wheelsets with good order (new or reconditioned) wheelsets. A damaged wheelset could break apart while the train is in motion and derail the train. The bad ordered wheelsets are sent to wheel shops. The wheel shops recondition the wheelsets and then send them back for use at the line points.
Wheel transporters move wheelsets between the line points and the wheel shops. These are rail cars that were modified to carry only wheelsets. For example, in 1996 CN had a fleet of 150 wheel transporters for freight wheelsets. These wheel transporters carried up to 44 wheelsets at one time. The wheelsets are loaded in two rows on the transporters. The first row consists of 23 wheelsets placed directly on the wheel transporter. A second row of 21 wheelsets lies on top of the first row. Two interlocking tiers of wheelsets make up each row.
The wheelsets are not tied down to the wheel transporters. Steel clamps tie the last four wheelsets at both ends of the car together. The forces that the wheelsets experiences during switching (moving individual cars to form a train consist or to spot at a location) or while the train is in motion could cause them to displace if the four end wheelset were not tied together. Together they act as a unit to block the other wheelsets from moving.
The AAR Wheel and Axle Manual states the following:
Section 1
Rule 1J6 Wheels mounted with roller bearings in place must be arranged when stored so the wheel flanges cannot strike either the roller bearing housing or the body of the adjacent axle. FIG. 4.52 in the Appendix illustrates a track arrangement for wheel and axle assemblies having roller bearings. When this arrangement is not available, assemblies should be stored one behind the other on single tracks.
Rule 1J7 The same precautions must be used in placing mounted wheels on a car for shipment. In addition they shall be securely blocked to prevent rolling and end sliding. Details of approved methods are given in the current issue of AAR Loading Rules.
Section 3
Rule 3B5 Special wheel cars should be provided for the shipment of mounted wheels between wheel shops and repair points. AAR Loading Rules illustrate approved methods of loading. Such cars have proved to be more reliable than the use of blocking in preventing axles from becoming damaged in transit. Wheel rack arrangement for shipping mounted wheels is illustrated in the Manual of Standards and Recommended Practices.
Together rules 1J6 and 1J7 state that wheel flanges must not strike the roller bearing of an adjacent wheelset while they are being moved on wheel transporters. The CN wheel transporter design uses the four end wheelsets that are tied together to block the other wheelsets from displacing when the transporter experiences normal forces during switching or train movement. The parts of the wheelsets that come in contact when they are blocked by the four end wheelsets are wheel flanges to roller bearings. This goes against rules 1J6 and 1J7.
A loading arrangement on an open top rail car must pass a number of tests before it becomes an approved method in the AAR Open Top Loading Rules. One of the tests is an impact test. Impact tests are like automobile crash tests using crash test dummies. Automobile crash tests deals with the safety of passengers. AAR impact test determines proper loading methods to ensure that the load being transported is not damaged.
In an impact test a number of rail cars, with a gross total weight of 250,000 pounds, are coupled together. These cars are placed on one track with both their hand and air brakes filly applied. In effect these rail cars act like a wall. A locomotive pushes the rail car with the test loading arrangement toward this wall of parked rail cars. At a certain speed the locomotive releases the test car so it hits the wall on its own. The test car must hit this wall at 4 miles per hour. After the impact the load is inspected. If everything is okay the test car must impact the wall at 6 miles per hour. If the load passes this impact a third impact at 8 miles per hour is performed. The same end of the test car impacts the wall during the 4, 6 and 8 miles per hour impacts. This ensures that the impact forces on the load are in the same direction. If the test car passes these three impacts then one more impact is made. The test car is turned around and pushed toward the wall so that the opposite end of the car hits the wall at 8 miles per hour. The load now experiences high forces in the opposite direction to those experienced in the first three impacts.
If the present wheel transporters used by CN and other North American railroads were to under go such an impact test, they would fail the test because contact would be made between roller bearings and adjacent wheel flange. The result of impact tests done with wheel transporters loaded with bad order wheelsets clearly shows that if good order wheelsets had been used, they would have been damaged. A loading arrangement that cannot be tested with new or reconditioned wheelsets should not be used to transport new and reconditioned wheelsets.
Unlike a passenger train, the ride of a freight train is not a smooth ride. Therefore, it is likely that the wheel flanges will hit the roller bearing of an adjacent wheelset often during transportation between wheel shops and line points. When the transporters are switched the flanges will contact the roller bearings with even greater force. This constant contact between wheel flange and roller bearing can damage the roller bearing internally. This damage could eventually lead to a hot box and a major derailment.
Wheelset Storage Racks
Constant replacement of bad order wheelsets requires the storage of wheelsets at line points and wheel shops. North American railroads store wheelsets in the same arrangement as on wheel transporters. Each row consists of two interlocking tiers of wheelsets. The wheelsets are piled several rows high depending on how busy the line point is. Unfortunately this is not the approved method of storing roller bearing wheelsets shown in FIG. 4.52 in Section 4 of the AAR Wheel and Axle Manual which ensures that the roller bearing is never in line with the wheel flange of an adjacent wheel (see appendix).
Rule 1J6 of the AAR Wheel and Axle Manual states that
“FIG. 4.52 in Section 4 of the AAR Wheel and Axle Manual illustrates a rack arrangement for wheel and axle assemblies having roller bearings.”
Although wheel shops with overhead cranes would not have any problems stacking the wheelsets in the approved AAR manner, line points that only use forklifts would have problems. The flanges of the wheelsets, in the approved loading method for roller bearing wheelsets, are never in line with roller bearings and therefore contact is not made.
Rule 1J6 also states that
“When this arrangement is not available, assemblies should be stored one behind the other on single tracks.”
This also ensures that wheel flanges are never in line with roller bearings since there is no tiers of interlocking wheelsets, but only some locations will use this method.
The actual method used to store wheelsets in many locations by North Ame

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Freight rail wheelset handling and storage protection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Freight rail wheelset handling and storage protection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Freight rail wheelset handling and storage protection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3163007

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.