Freeze-dried preparation of human growth hormone

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S008100, C514S021800, C530S324000, C530S338000, C530S399000, C530S420000, C530S422000

Reexamination Certificate

active

06566329

ABSTRACT:

FIELD OF INVENTION
The present invention relates to a method of preparing a freeze-dried preparation of human growth hormone.
BACKGROUND OF INVENTION
By recombinant DNA technology a great number of therapeutic proteins are produced and marketed. Dependent on the protein conformation and/or posttranslational modification a number of different host cell systems are used. Thus proteins like insulin, glucagon, factor VII and human growth hormone (hGH) are produced recombinantly. Following expression the desired proteins are purified, typically by use of a number of chromatographic operations and by means of precipitations. Precipitates can be crystalline or amorphous.
The final product achieved by a purification procedure is typically called bulk material to be used for the following formulation of the product. It is desirable to obtain crystalline bulk materials because crystals are well defined and easy to dissolve facilitating the following formulation procedure. Crystals are often stable and can therefore be stored safely before use.
Amorphous precipitates are typically achieved by precipitation at the isoelectric point in the presence of organic solvents such as ethanol in order to increase the yield, or by means of salting-out procedures by addition of ammonium sulphate.
hGH has previously been isoprecipitated as an amorphous solid. However, it is generally difficult to redissolve amorphous hGH completely. To achieve total dissolution it is necessary to use denaturing buffers such as guadinium chloride or urea.
Experience has shown that it is very difficult to crystallize hGH. HGH can be co-crystallized with zinc ions giving small crystals (European Patent No. 540 582: Growth Hormone Crystals and a Process for Production of these GH-Crystals, Applicant: Novo Nordisk A/S, Inventors: Junker, J.; Skriver, L.). However, formulations of hGH typically do not have the presence of zinc ions. Therefore, before formulation, hGH co-crystallized with zinc has to be redissolved and a buffer change has to be performed.
A solid hGH product—SOMATROPIN—is mentioned in pages 1518-1521 of the 1997 European Pharmacopoeia (1997:0951). How to prepare this bulk material is not mentioned and only specifications are stated.
In 1997, Overcashier et al. (Overcashier D. E. et al., Jour. Pharm. Sci. 86(4):455-459 (1997)) published an article describing the preparation of excipient-free recombinant human tissue-type plasminogen. The article states that precipitation of proteins by pH adjustments (iso-precipitation) or ionic strength regulation often leads to denaturation of the proteins resulting in reduced therapeutic activity. A method based on lyophilization of the protein from the ammonium bicarbonate was described. It was shown that the freeze-drying procedures took place in two steps. A large pressure increase was observed in the procedure when water was removed, and it was suggested that ammonium bicarbonate was evenly distributed over the lyophilization product. The following sublimation of ammonium bicarbonate resulted in a decomposition into water, carbon dioxide and ammonia which gave rise to the mentioned pressure increase. Thus, in the presence of ammonium bicarbonate it can be technically difficult to perform the freeze-drying procedure which might give reproducibility problems for the solid bulk material.
In 1998, Senderoff et al. (Senderoff, R. I. et al., Jour. Pharm. Sci. 87(2):183-189 (1998)) described a method to achieve excipient-free GLP-1 (glucagon-like peptide 1). It starting material was obtained by reverse phase chromatography in ethanolic acetic acid buffers followed by isoprecipitation, resolubilisation and a first lyophilization. However, redissolution in neutral buffer systems was highly unsatisfactory. Furthermore, the conformation was different from that of a standard. To improve dissolution and to achieve the correct conformation (stability) the first lyophilisate was reprocessed in three different ways:
1) Wash followed by lyophilization of a slurry.
2) Resolubilisation in 0.05 M ammonium hydroxide followed by lyophilization.
3) Resolubilisation in 6 M urea 1% acetic acid—reverse phase chromatography—cation exchange chromatography, elution with 0.05 M ammonium hydroxide—lyophilization.
To compare the conformations of the lyophilised GLP-1 products infrared spectroscopy was used . Only procedure 3 resulted in a product that could readily be resolubilised completely and had the same conformation as that of a standard preparation.
The other methods showed considerable conformational deviations from that of the standard and unsatisfactory dissolution properties.
In spite of the above teachings it has now surprisingly been shown that a single lyophilization of a slurry of an amorphous hGH precipitate in an aqueous system (free of buffer components) at the isoelectric point resulted in a product with a minimal content of degradation products in terms of deamidation, dimers, polymers, etc. and also with a correct tertiary structure as determined by NMR spectroscopy. Additionally, the product was readily soluble in neutral buffers and full biological activity was encountered.
SUMMARY OF THE INVENTION
The present invention provides a method for preparing a readily soluble freeze-dried solid preparation of hGH with a minimal content of degradation products in terms of deamidation, dimers, polymers, and sulphoxide forms, the method comprising a single lyophilization of an aqueous slurry of an amorphous hGH isoprecipitate, the slurry being essentially free of buffer components and having a pH of or near to the isoelectrical point of hGH (pH about 5).
The present invention further provides a readily soluble freeze-dried solid preparation of hGH with a minimal content of degradation products in terms of deamidation, dimers, polymers, and sulphoxide forms, obtainable by a method comprising a single lyophilization of an aqueous slurry of an amorphous hGH isoprecipitate, the slurry being essentially free of buffer components and having a pH of or near to the isoelectrical point of hGH.
The freeze-dried solid preparation of hGH is readily soluble in aqueous buffer.
DETAILED DESCRIPTION OF THE INVENTION
In order to obtain a uniform hGH bulk material a solid hGH preparation was prepared essentially free of excipients. To obtain this, freeze-drying was carried out at low pH (approximately 5) close to the isoelectric point of hGH. Before freeze-drying the pH was adjusted with acetic acid, thus the only counter ion present was acetate buffering at pH 5. Freeze-drying at fairly low pH has the advantage that the formation of degradation products are minimised and a more homogeneous product is obtained in comparison with freeze-drying carried out at higher pHs such as in the carbonate containing systems.
The hGH solid bulk is prepared as follows:
The starting material for the production of solid bulk hGH is the product from the last step of the purification process used for purifying recombinantly produced hGH.
The process steps are designed to transform the hGH solution into a freeze-dried powder without or almost without excipients.
The hGH solid bulk preparation consists of a concentration step, a desalting step, a microfiltration step, an isoprecipitation step, and a freeze-drying step.
The concentration step: The step has been introduced in order to concentrate the hGH solution from, for example, 2-6 mg/ml to 20-70 mg/ml, and to obtain a buffer change from, for example, 7 M urea buffer to 0.35 M ammonium acetate buffer. The concentration is performed on an anion exchange column.
The desalting step: The step has been introduced in order to obtain hGH in pure water without salts and other excipients. The desalting is performed on a desalting column.
The microfiltration step (0.22 &mgr;m filter): The step has been introduced in order to minimise the microbial contamination. Sterility is not claimed.
The isoprecipitation step: The step has been introduced to stabilise the product during the final freeze-drying. The solution was precipitated by adjusting the pH to 4.7-5.0 with 1 M of acetic acid

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Freeze-dried preparation of human growth hormone does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Freeze-dried preparation of human growth hormone, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Freeze-dried preparation of human growth hormone will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3075509

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.