Optical waveguides – With optical coupler – Switch
Reexamination Certificate
2000-03-03
2002-04-02
Sanghavi, Hemang (Department: 2874)
Optical waveguides
With optical coupler
Switch
C385S018000, C385S033000, C385S034000
Reexamination Certificate
active
06366715
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to optical cross-connect switches, and more particularly, to optical cross-connect switches using micromachined mirrors.
BACKGROUND OF THE INVENTION
Optical fibers provide significantly higher data rates than electronic paths. However, effective utilization of the greater bandwidth inherent in optical signal paths requires optical cross-connect switches. In a typical telecommunications environment, switching of signals between optical fibers utilizes an electrical cross-connect switch. The optical signals are first converted to electrical signals. After the electrical signals have been switched, the signals are again converted back to optical signals that are transmitted via the optical fibers. To achieve high throughput, the electrical cross-connect switches utilize highly parallel, and highly costly, switching arrangements. However, even with such parallel architectures, the cross-connect switches remain a bottleneck.
A number of optical cross-connect switches have been proposed; however, none of these has successfully filled the need for an inexpensive, reliable, optical cross-connect switch. One class of optical cross-connects depends on wavelength division multiplexing (WDM) to affect the switching. However, this type of system requires the optical signals being switched to have different wavelengths. In systems where the light signals are all at the same wavelength, this type of system requires the signals to be converted to the desired wavelength, switched, and then be re-converted to the original wavelength. This conversion process complicates the system and increases the cost.
A second type of optical cross-connect utilizes small mirrors to divert light from a first path into a second path. For example, cross-connect switches constructed from total internal reflection (TIR) switching elements are known to the art. A TIR element consists of a waveguide with a switchable boundary. Light strikes the boundary at an angle. In the first state, the boundary separates two regions having substantially different indices of refraction. In this state the light is reflected off of the boundary and thus changes direction. In the second state, the two regions separated by the boundary have the same index of refraction and the light continues in a straight line through the boundary. The magnitude of the change of direction depends on the difference in the index of refraction of the two regions. To obtain a large change in direction, the region behind the boundary must be switchable between an index of refraction equal to that of the waveguide and an index of refraction that differs markedly from that of the waveguide.
Prior art TIR elements that provide a large change in index of refraction operate by mechanically changing the material behind the boundary. For example, one class of TIR element utilizes a gas bubble in an index matching liquid. The gas bubble is shifted into the boundary mechanically or generated at the boundary by heating the liquid. When present, the gas bubble causes the boundary to be reflecting.
Unfortunately, very large cross-connect switches based on TIR elements are not easily constructed. The boundary region between the two waveguides is typically a trench that has been cut into the substrate in which the waveguides were constructed. When the light is crossing this trench, it is no longer in a waveguide and the beam expands. As a result some of the light is not collected by the waveguide on the other side of the trench.
While the losses at a single cross-point are small, the cumulative losses in a large switch render the switch useless. Consider an N×N cross-connect switch for connecting N input optical fibers to N output optical fibers. Each light signal must pass through N−1 cross-points in the transmitting state. Hence, each light signal will suffer an attenuation of T
(N−1),
where T is the transmission of a single cross-point in the transmitting state. Hence, even in those cases in which the losses are a small fraction of a percent, the signal intensity at the output fiber will be essentially zero after a few hundred cross-points.
In principle, free-space optical cross-connect switches based on mechanically actuated mirrors can avoid the attenuation problems inherent in TIR cross-connect switches. A free-space optical cross-connect switch consists of a two dimensional array of mirror elements. Each mirror element diverts the light from one input fiber to one output fiber. Consider an N×N cross-connect switch. The switch has N
2
mirrors arranged in N rows and columns. A light signal is switched from the kth input fiber to the jth output fiber by causing a mirror at the jth column in the kth row to intercept the light signal. All other mirrors on the kth row and jth column are positioned such that those mirrors do not block the path of the light signal. Hence, the light signal is not subjected to any attenuation as it moves along the kth row and down the jth column.
Unfortunately, the size of the mirrors must be large enough to reflect substantially all of the light leaving the output fiber. Since the light is no longer guided when it leaves the optical fiber, the light signal expands because of diffraction. Hence, the mirrors that are far from the end of the fiber must be large enough to reflect substantially all of this light into collimating lens of the output optical fiber. In addition, the spacing between the rows and columns of the mirror array must be sufficient to assure that light traversing any particular row or column will not be picked up by a mirror on an adjacent row or column and thereby cause cross-talk between the fibers.
Broadly, it is the object of the present invention to provide an improved optical cross-connect switch.
It is a further object of the present invention to provide an optical cross-connect that does not require the large mirrors or mirror spacings discussed above.
These and other objects of the present invention will become apparent to those skilled in the art from the following detailed description of the invention and the accompanying drawings.
SUMMARY OF THE INVENTION
The present invention is a cross-connect switch for switching light signals arriving on N input optical fibers to M output optical fibers. The switch includes N×M mirror elements arranged as N rows and M columns of mirror elements. Each mirror element has a reflecting state and a non-reflecting state. In the reflecting state, each mirror element reflects light from a corresponding one of the input optical fibers to a corresponding one of the output optical fibers. Each mirror element is positioned in the non-reflecting state such that the mirror element does not intercept light from any of the input optical fibers. All of the mirror elements corresponding to a given input optical fiber are located on the same row and all mirror elements corresponding to a given output optical fiber are located in the same column. The switch also includes a plurality of re-collimating lenses. One such re-collimating lens is located between two of the mirror elements in each of the rows of mirror elements. Each re-collimating lens collimates light from the input optical fiber corresponding to that row. The switch also includes one such re-collimating lens between two of the mirror elements in each of the columns of mirror elements.
REFERENCES:
patent: 5255332 (1993-10-01), Welch et al.
patent: 5283843 (1994-02-01), Olmstead
patent: 5960132 (1999-09-01), Lin
patent: 6005998 (1999-12-01), Lee et al.
Agilent Technologie,s Inc.
Knauss Scott
Sanghavi Hemang
LandOfFree
Free space optical switch with lenses for re-collimating the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Free space optical switch with lenses for re-collimating the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Free space optical switch with lenses for re-collimating the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2855554