Computer graphics processing and selective visual display system – Display peripheral interface input device – Cursor mark position control device
Reexamination Certificate
1998-08-07
2001-03-06
Liang, Regina (Department: 2774)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Cursor mark position control device
C345S156000, C463S038000
Reexamination Certificate
active
06198471
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to an input/output device for providing multi-axis input to and receiving multi-axis output from an information processing device to control the direction of motion of a referenced object in virtual or real three dimensional (3D) space.
Controllers similar to joysticks are used in various industrial applications to remotely control machinery, for robotics applications and to work pieces during a manufacturing process. In flight simulators, computer games and virtual reality games, a joystick typically provides the 3D interface between the user and the information processing device (or computer) running the flight simulation or game. A controller or joystick operates by generating electrical signals proportional to the displacement of a control level in the direction of each axis. U.S. Pat. No. 4,281,561 to Groskopfs, “Three Axes Controller,” U.S. Pat. No. 5,589,828 to Armstrong, “6 Degrees of Freedom Controller Capable of Tactile Leedback,” and U.S. Pat. No. 4,795,952 to Brandstetter, “Joystick For Three Axis Control of A Powered Element” describe typical joystick type controllers.
Joysticks and industrial controllers provide generally only a rough representation of an object in three dimensional space. Additionally, because of the length of the control lever, such controllers lack sensitivity to smaller increments of movement and do not provide a comfortable feel or feeling for the environment (real or virtual). Such prior art controllers, while useful, generally provide poor control of the relative real or virtual 3D environment. This disadvantage renders inaccurate approximations for the user's virtual or real 3D space and is uncomfortable or exhausting to the user.
U.S. Pat. No. 5,491,497 to Suzuki, “Multi-Way Input Device,” describes a device for three-dimensional input to an information processing device in which the user inputs directional inputs through movement of a spherically shaped operating member which lies outside a spherically shaped housing. Movement of the operating member relative to the housing activates switches on a substrate within the housing which detect rotation in the X, Y, and Z axes. A defined movement in the sensed direction becomes, for example, a cursor movement on a television screen in two axis directions, namely in the right and left directions and the direction perpendicular to the surface. A separate actuator is also provided which enables the user to move a cursor in a uniaxial direction. Each sensed direction is achieved by a single switch arrangement and typically depression of such switches is nominal. Such limited motion, though quick in operation, is a significant drawback from human interaction relating to an object referenced in three-dimensional virtual or real space. Furthermore, Suzuki's multi-way input device is limited to use on a planar surface; motion is confined only to a downward direction because no resistance to upward motion is provided. If the device is not anchored in any fashion, uniaxial motion in the Z-axis is eliminated.
Traditionally, joysticks and controllers require only one hand to manipulate referenced objects in 3D space. Suzuki's spherically shaped controller requires two hands to operate, but it is not ergonomic; the controller is not held by the user, rather the user places one hand on the housing and the other hand on the operating member and moves one relative to the other. Also, translational motion is counter-intuitive. In Suzuki, the user must first move the operating member relative to the housing to select a direction of movement, then h e must activate a switch to start the cursor moving in that direction. Furthermore, Suzuki's device has no capability for tactile feedback response from the 3D virtual or real space; feedback is passive and limited to the depression length of the switches.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a multi-axis controller for 3D virtual and real space which is comfortable, ergonomic, simple, efficient and to provide a practical means of controlling virtual and real 3D space. It is another object of the invention to provide a multi-axis controller for virtual and real 3D space which provides the user tactile feedback. It is also an object of the invention to provide a multi-axis controller for virtual and real 3D space which is capable of making 3D input intuitive to a human's directional sense. It is yet another object of the invention to provide a controller that manipulates the virtual or real 3D environment accurately, comfortably and efficiently with a realistic feeling that does not create user fatigue or exhaustion.
To achieve the foregoing and other objects, a multi-axis controller for providing inputs to, and receiving outputs from, a three-dimensional environment embodies the present invention. The controller may comprise a first drive member rotatable about a first axis; a first handle coupled to one end of the first drive member; a first transducer, coupling the first handle to the one end of the first drive member, for detecting the rotation of the first handle about the first axis; a second drive member rotatable about a second axis and rotatable about a third axis; a second handle; a second transducer, coupling the second handle to the second drive member, for detecting the rotation of the second handle about the second axis; and a third transducer, coupling the second handle to the second drive member for detecting the rotation of the second handle about the third axis.
In one embodiment, the first drive member includes a shrouding shaft formed in the shape of a hollow tube, rotatable about a first axis, and a main shaft, rotatable about the first axis. The first handle is coupled to a first end of the shrouding shaft, wherein the main shaft is rotatably disposed within the shrouding shaft and the first transducer couples the first handle to a first end of the main shaft. The second drive member may include a dual shaft having a first arm rotatable about a second axis and a second arm rotatable about a third axis. The second transducer is coupled to the second end of the main shaft and couples the second handle to the first arm of the dual shaft. The third transducer couples the second handle to the second arm of the dual shaft for detecting the rotation of the second handle about the third axis.
The multi-axis controller for virtual and real 3D space controls a real or virtual 3D environment by the manipulation of three interdependent mechanical shafts. An optional housing may be provided for containing the drive member. The housing can be formed in any convenient shape for supporting the controller on a surface, although no housing is needed to operate the controller.
One handle of the controller provides a reference from which the user applies inputs or articulation through the second handle. The controller is described herein specifically where the first, or left, handle is the reference handle and the second, or right, handle is the input handle. This configuration can be easily reversed so that the right handle is the reference and the left handle is the input handle. Right handed and left handed users can easily operate the controller in either position.
The user manipulates objects referenced in virtual or real 3D space by left and right handles arranged preferably on opposite sides of the drive member, or at 180 degrees from one another. Manipulation of the first and second handles causes internal responses in the transducers which are translated into electrical signals. The electrical signals are then processed by an information processing device to manipulate an object in its respective virtual or real 3D environment (either through operation of a computer program or transmitted to a piece of hardware such as a robotic device). Additionally, tactile feedback devices can be installed so that the user can be acted upon through feedback responses from the controller according to the real or virtual 3D environment. Torsion springs may be added
Fitch Even Tabin & Flannery
Liang Regina
LandOfFree
Free-floating multi-axis controller does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Free-floating multi-axis controller, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Free-floating multi-axis controller will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2542700