Multiplex communications – Fault recovery
Reexamination Certificate
1998-10-23
2002-08-13
Chin, Wellington (Department: 2664)
Multiplex communications
Fault recovery
C370S445000
Reexamination Certificate
active
06434112
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a local area network and, more particularly, to a method of transmitting frames onto the communications medium of a local area network.
2. Discussion of Related Art
The medium-access method of a local area network (LAN), which is the strategy used by the nodes of the network to gain access to the communications medium of the network, is defined at the data-link layer of the Open Systems Interconnection (OSI) reference model (i.e.,at the later immediately above the physical layer) and at the medium-access control sublayer of the ANSI IEEE 802.x networking standards (i.e., at the sublayer immediately above the physical layer). The medium-access control sublayer and the logical-link control sublayer immediately above it of the IEEE 902.x networking standard are together functionally equivalent to the data-link layer of the OSI reference model.
When medium-access control is exercised at the nodes, medium-access is said to be distributed, when medium-access control is exercised at a wiring center (e.g., at a hub), rather than at the nodes, medium-access is said to be centralized. Distributed methods, which include the medium-access methods utilized in a large majority of today's LANs, may be further classified as either deterministic or contentious.
When using a deterministic (or noncontentious) medium-access method, the nodes of the network gain access to the communications medium in an order that is dictated either by a network server of by the arrangement of the nodes themselves. The two most widely-known deterministic medium-access methods are token-passing, which is used in Token Ring networks, and poling, which is typically used in mainframe environments. Deterministic methods are, in general, well-suited to large networks and networks with heavy traffic. In addition, certain applications, such as real-time process control, must be implemented using deterministic medium-access methods.
When a network employs a contentious(or nondeterministic) medium-access method, the first node which gains access to an idle communications medium may not retain access to the medium for long enough to complete transmission of its frame, in stark contrast to the guaranteed access to the medium provided when the network employs a deterministic medium-access method. In general, contentious medium-access methods are well-suited to small networks and networks with light traffic. The best-known contentious medium-access method is undoubtedly Carrier-Sense Multiple Access with Collision-Detect (CSMA/CD), since CSMA/CD is the medium-access method used on Ethernet, the architecture of the great majority of LANs installed during the last 20 years.
Ethernet is a multiple access architecture(the MA in CSMA/CD), since the nodes of the LAN transmit and receive frames over a shared communications medium. The CS in CSMA/CD means that all nodes continuously monitor the communications medium and can distinguish between an idle and a busy medium. This (Carrier-Sense) capability of the nodes is employed to improve the efficiency of the network by avoiding collisions. A node checks for traffic on the communications medium before attempting to transmit a frame onto the medium. If the medium should be busy, the node would defer transmission of the frame until the medium should become idle and only then would initiate transmission of the frame.
The CDSin CSMA/CD means that a node monitors the communications medium as it transmits a frame onto the medium and can detect when the frame has collided with a frame transmitted by another node. This (Collision-Detect) capability of the nodes is utilized to improve the efficiency of the network by reducing the duration of collisions that occur despite the efforts of the adapters to avoid collisions. If a frame being transmitted by a given node should collide with a frame being transmitted by another node, the given node would terminate transmission of its frame after ensuring that it had broadcast a minimum length transmission-jam signal in order to notify all other nodes of the collision.
Frame transmission which utilizes the CSMA/CD medium-access method of the Ethernet variation embodied in the IEEE 802.3 networking standard is described below with reference to the flow chart of FIG.
1
. Although the sequence of steps of the medium-access method illustrated in the flow chart of
FIG. 1
(i.e., the CSMA/CD algorithm of the IEEE 802.3 networking standard) is typically implemented entirely in hardware on a node's 802.3 adapter (also called a network interface card, network board, LAN card, LAN adapter, . . . ), neither the IEEE 802.3 standard nor any variation of Ethernet requires hardware implementation of its medium-access method. The CSMA/CD algorithm could thus be implemented entirely in software on a general-purpose microprocessor, in firmware, with programmable hardware, such as a field programmable gate array, or in a combination of hardware and software.
After an adapter has assembled a frame (
100
) to be transmitted, initialized to zero(i.e., set equal to zero)a count of successive failed transmission attempts (
101
), and, by monitoring an analog Carrier-Sense signal of the communications medium, established that the medium is idle (
102
), the adapter initiates transmission of its frame (
105
) without negotiating with other adapters. The IEEE 802.3 specification prescribes an upper bound of 1500 bytes for the data field of a frame so that any adapter can control the communications medium for only a limited period of time.
To ensure that no one node can monopolize the communications medium, an adapter must also delay at least 51.2 ms after completing transmission of one frame (
104
) before initiating transmission of another frame. This minimum inter-frame interval gives other adapters a chance to transmit their frames and therefore prevents any one adapter from transmitting back-to-back frames so close together that adapter is able to maintain continuous control of the communications medium.
Because access to the communications medium is not controlled centrally, two adapters may begin transmitting frames at nearly the same time, either because both adapters found the communications medium to be idle or because both adapters had been waiting for the busy medium to become idle. If and when this happens, two transmissions will overlap or collide (
106
) on the medium, resulting in a contention appropriately called a collision. If a collision does not occur during transmission of a frame, transmission of the (entire)frame will presumably be completed without incident. (Although the present invention is directed only to frame transmission, it is important to note that successful frame transmission does not guarantee successful frame reception, since frame reception may still be flawed due, for example, to lack of buffer space or a missed interrupt at the receiving adapter.)
A collision can occur only during the initial part of an adapter's transmission, which is often referred to as the collision window of the transmission, before the transmitted signal has had time to propagate to all nodes on the medium. Once the collision window has closed, figuratively speaking, subsequent collisions are avoided, since all other properly functioning adapters notice the transmitted signal (by means of the Carrier-Sense signal) and defer to it.
A transmitting adapter is able to establish that its frame has collided by monitoring an analog Collision-Detect signal on the medium (e.g., by comparing the power or pulse width of a signal received during transmission with that of the signal the adapter is transmitting.)
When a given adapter establishes that its transmission has collided with the trans-mission of another adapter, the given adapter first makes sure to broadcast a transmission-jam signal consisting of at least the first 512 bits of its frame and then terminates transmission of its frame (
107
). That is, the given adapter truncates its frame after ensuring that at least the
Birch & Stewart Kolasch & Birch, LLP
Chin Wellington
LG Semicon Co. Ltd.
Pham Brenda
LandOfFree
Frame transmission method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Frame transmission method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Frame transmission method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2914317