Surgery – Instruments – Suture – ligature – elastic band or clip applier
Reexamination Certificate
2001-08-24
2004-04-13
Milano, Michael J. (Department: 3731)
Surgery
Instruments
Suture, ligature, elastic band or clip applier
C606S144000
Reexamination Certificate
active
06719764
ABSTRACT:
TECHNICAL FIELD
The invention relates to devices and methods for placing sutures.
BACKGROUND INFORMATION
Until recently, all but the simplest surgical procedures required the physician to make a large opening in the human body in order to expose the area requiring surgical repair. Today instruments are available that allow for viewing of internal body regions through a small puncture wound without exposing the entire body cavity. These instruments, called endoscopes, can be used in conjunction with specialized surgical instruments to detect, diagnose, and repair areas of the body that previously required open surgery to access.
Some surgical instruments used in endoscopic procedures are limited by the manier in which they access the areas of the human body in need of repair. In particular, the instruments may not be able to access tissue or organs located deep within the body or that are in some way obstructed. Also, many of the instruments are limited by the way they grasp tissue, apply a suture, or recapture the needle and suture. Furthermore, many of the instruments are complicated and expensive to use due to the numerous parts and/or subassemblies required to make them function properly. Suturing remains a delicate and time-consuming aspect of most surgeries, including those performed endoscopically.
SUMMARY OF THE INVENTION
The present invention allows for the performance of surgical procedures that involve the passing of sutures through tissue, for example, in a location that is facilitated by the suturing instrument deploying the suture in a forward-facing direction in relation to the suturing instrument. In addition, this invention provides for the catching and retrieval of the suture after it is passed through the tissue, for example. In particular this suturing instrument may be placed or positioned in the body such that a suture may be passed into a tissue of the body while the face of the distal end of the instrument abuts the tissue. Such a surgical device may allow for surgical procedures not previously possible or improve upon the performance of known surgical protocols.
In one aspect, the invention relates to a suturing instrument. The suturing instrument includes an elongate body member, a needle deployment system disposed at a distal portion of the elongate body member. The needle deployment system includes a forward-deploying needle carrier including a needle for tissue penetration and a catch to receive and retain the needle. The inclusion of a needle catch in the needle deployment system prevents the need for the introduction of a second surgical instrument into the location of the body where the suture was passed in order to retrieve the suture.
In some embodiments, the suturing instrument may include a deployment controller having a proximal end and a distal end. The deployment controller extends substantially along a longitudinal axis of the elongate body member to the distal portion of the elongate body member, where the distal end of the deployment controller is coupled to the needle carrier and moves the needle carrier between a retracted position and a deployed position. The proximal end of the deployment controller may be coupled to an actuator. In some embodiments, the deployment controller guides the needle carrier along a path which includes a proximal curved path segment such that the needle carrier initially travels away from the elongate body member and then toward the elongate body member.
Various embodiments according to the foregoing aspect of the invention can include the following features. A suture can include a needle, and the needle can be permanently fixed to an end of the suture. The needle fixed on the suture can insert into the needle carrier. Also, the needle can be plastic, metal, or polymer compound. In addition, the suturing instrument can include a catch to receive and retain the needle, where the catch is positioned on the elongate body member such that a distal segment of the needle carrier's path is intercepted by the catch. Additionally, the suturing instrument may include a second needle carrier and a second forward-directed directed exit port. Further, the deployment controller may be coupled to the needle carrier with a flexible driver member. The flexible driver member may be manufactured of an alloy that includes at least or exclusively nickel and titanium.
In yet another embodiment, the invention relates to a suturing instrument including an elongate body member having a longitudinal axis and a distal tip needle deployment assembly joined with a distal end of the elongate body member such that the distal tip assembly is free to rotate axially about the longitudinal axis of the elongate body member. The distal tip needle deployment assembly includes a forward-directed needle exit port and a curved needle carrier channel formed in the distal tip needle deployment assembly, a curved needle carrier movably positioned in the curved needle carrier channel, a suture with an attached needle tip, and a deployment controller including a proximal end and a distal end. The deployment controller extends substantially along the longitudinal axis of the elongate body member to the distal end of the elongate body member, where the distal end of the deployment controller is coupled to the distal tip suture deployment assembly and moves the curved suture carrier through the curved suture carrier channel as the deployment controller moves between a retracted position and a deployed position. Additionally, the proximal end of the deployment controller may be coupled to an actuator.
In still another embodiment, the invention relates to a suturing instrument including a body member defining a forward-directed exit port and a needle carrier channel, a needle carrier movably positioned in the needle carrier channel, and a surgical needle attached with an interference fit on a distal end of the needle carrier. The needle carrier has a retracted position within an interior region of the body member and a deployed position exterior to the body member. The needle carrier is configured within the needle carrier channel such that the needle carrier exits the interior region of the body member through the forward-directed exit port. In addition, the forward-directed exit port, needle carrier channel, and needle carrier can be located in a distal tip assembly coupled to the body member, and the distal tip assembly can be coupled to the body member such that the distal tip assembly is free to rotate axially about a longitudinal axis of the body member. In addition, the needle carrier and needle catch can be located in a distal tip assembly coupled to the elongate body member at a pivot joint such that the distal tip assembly is free to deflect about the pivot joint. Such embodiments described above allow for enhanced control of the precise placement or position of the distal tip of the suturing instrument.
An additional aspect of the invention relates to a method for placing a suture in tissue. The method includes the steps of placing a suturing instrument enclosing a needle carrier having an attached needle for tissue penetration, deploying the needle carrier out of the suturing instrument through a forward—directed exit port such that the needle carrier exits an interior region of the suturing instrument through the exit port along a path which approaches being substantially tangential to an outer surface of the suturing instrument surrounding the forward-directed exit port, and capturing a needle attached to a suture and carried by the needle carrier in a catch that receives and retains the needle. The needle carrier is movably positioned within a needle carrier channel adjacent the tissue to be sutured.
In one embodiment, deploying the forward-deploying needle carrier out of the suturing instrument through a forward-directed exit port includes activating a deployment controller, which includes a distal end that extends substantially along a longitudinal axis of an elongate body member to the distal portion of the elongate body member. The
Gellman Barry N.
Slanda Jozef
Milano Michael J.
Pantuck Bradford C
Sci-Med Life Systems, Inc.
LandOfFree
Forward deploying suturing device and methods of use does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Forward deploying suturing device and methods of use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Forward deploying suturing device and methods of use will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3214613