Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Web – sheet or filament bases; compositions of bandages; or...
Reexamination Certificate
1995-06-07
2003-06-03
Webman, Edward J. (Department: 1617)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Web, sheet or filament bases; compositions of bandages; or...
C514S947000, C514S288000
Reexamination Certificate
active
06572879
ABSTRACT:
FIELD OF INVENTION
This invention relates to the safe and efficacious transdermal administration of pergolide for, among other things, the treatment of Parkinson's Disease. More particularly, the invention relates to novel methods, compositions, and devices for administering pergolide to a subject through a body surface or membrane over a sustained time period.
BACKGROUND OF THE INVENTION
Pergolide, 8-[(methylthio)methyl]-6-propylergoline, a compound based on the ergoline ring system, is reported to be a dopaminergic agonist that also decreases plasma prolactin concentrations. When used for treating Parkinson's Disease, pergolide is used as an adjuvant to levodopa.
U.S. Pat. No. 4,166,182, incorporated herein in its entirety by reference, describes the preparation of pergolide and its oral or parenteral administration as a prolactin inhibitor and in the treatment of Parkinson's Disease.
German patent application DE 4240798, incorporated herein its entirety by reference, describes a pharmaceutical composition containing ergot derivatives, including pergolide, for protection of nerves. The composition may be delivered orally, sublingually, parenterally, percutaneously or nasally.
U.S. Pat. No. 4,797,405 incorporated herein in its entirety by reference, discusses stabilized pergolide oral compositions that demonstrate reduced decomposition when exposed to light.
The dopaminergic agonist effect of pergolide has resulted in its use in a variety of treatments, in addition to the treatment of Parkinson's Disease. For example, U.S. Pat. No. 4,800,204, incorporated herein in its entirety by reference, discusses a method of controlling tobacco use by orally or parenterally administering a direct dopamine receptor agonist such as pergolide.
U.S. Pat. No. 4,935,429, incorporated herein in its entirety by reference, discusses a method of treating psychostimulant abuse by orally or parenterally administering a dopamine agonist such as pergolide.
U.S. Pat. No. 5,063,234, incorporated herein in its entirety by reference, discusses a method of inhibiting bone demineralization by administering, preferably orally, an ergot derivative, such as pergolide.
The oral administration of pergolide in the treatment of Parkinson's Disease is initiated with 0.05 mg/day dosage for the first 2 days. The dosage is then gradually increased by 0.1 or 0.15 mg/day every third day over the next 12 days of therapy. The dosage may-then be increased by 0.25 mg/day every third day until an optimum therapeutic dosage is achieved at a range of about 1.5 to 8.0 mg/day. Generally, the daily dose is divided into three oral doses. The side effects of oral administration include, but are not limited to nausea, vomiting, dizziness and orthostatic hypotension.
The transdermal route of parenteral delivery of drugs and other biologically active agents (“agents”) has been proposed for a wide variety of systemically acting and locally acting agents on either a rate-controlled or non-rate-controlled basis and is described in numerous technical publications such as the following: U.S. Pat. Nos. 3,598,122; 3,598,123; 3,731,683; 3,797,494; 4,031,894; 4,201,211; 4,286,592; 4,314,557; 4,379,454; 4,435,180; 4,559,222; 4,568,343; 4,573,995; 4,588,580; 4,645,502; 4,704,282; 4,788,062; 4,816,258; 4,849,226; 4,908,027; 4,943,435; and 5,004,610, the disclosures of which are incorporated in their entirety herein by reference. The transdermal administration of a related compound, lisuride, for treating Parkinson's Disease, is disclosed in U.S. Pat. Nos. 5,252,335 and 5,229,129, the disclosures of which are incorporated in their entirety herein by reference.
When first investigated in depth in the late 1960's, the transdermal route of administration appeared to offer many advantages, particularly with respect to agents that had short half lives and therefore required frequent, repeated dosing or were subject to a high degree of first-pass metabolism by the liver when orally administered. Theoretically, the peaks and valleys in blood concentration resulting of frequent periodic doses of short half-life agents would be eliminated and replaced by substantially constant plasma concentration. This would not only improve patient compliance but also would eliminate the alternating periods of high side-effects and ineffective blood concentrations associated with period dosing. It was also thought that administering the agent through the skin directly into the blood stream would eliminate first-pass metabolism of orally administered agents.
It was initially assumed, theoretically, that any short half-life agent of high potency and skin permeability would be suitable for safe and effective transdermal administration. This assumption, however, has not been proven true.
The failure of the transdermal route to fulfill the initial expectations of its potential as an administrative portal was primarily due to the incredible variety of properties with which nature has endowed the skin to permit it to perform its function as the primary barrier to prevent the ingress of foreign substances into the body. See Transdermal Drug Delivery: Problems and Possibilities, B. M. Knepp, et al, CRC Critical Reviews and Therapeutic Drug Carrier Systems, Vol. 4, Issue 1 (1987).
Thus, the transdermal route of administration, rather than being available to every short half-life agent of high potency and skin permeability, was found to be available only to those few agents that possess the proper combination of a host of characteristics, most of which are unpredictable, required to render the agent suitable for safe and effective transdermal administration.
The most significant of these characteristics are the following:
1. Skin Permeability. The permeability of the skin to the agent must be sufficiently high so that the agent can be administered at a therapeutically effective rate through an area of skin no greater than about 200 cm
2
and preferably no greater than 50 cm
2
. The person-to-person variation in skin permeability at similar sites should also be considered.
2. Skin Binding. The skin beneath the transdermal delivery device has the capability of binding or dissolving a certain amount of agent. The amount of agent so bound must be supplied to the skin before the agent can be delivered into the blood stream at therapeutically effective rates. If large amounts of the agent are bound in the skin, significant delays in the onset of therapeutic effect (“lag time”) will be observed together with corresponding delays and termination of effect upon removal of the device. The potential also exists for toxic quantities of potent agents to be contained within the skin beneath the device. Skin binding is not related to skin permeability. Agents that are highly permeable may also be highly bound causing a lag time sufficiently long as to render them unsuitable for their intended use.
3. Irritation. The skin reacts to many topically applied substances, particularly those maintained under occlusion, by blistering or reddening accompanied by unpleasant burning, itching, and stinging sensations. Animal models are used to screen for irritation. Animal models, however, often produce both false positives and false negatives. There is also a wide interpersonal variation in susceptibility to irritation. An agent must be minimally irritating in a large percentage of the potential patient population in order to be suitable for safe and effective transdermal administration.
4. Sensitization. Sensitization is an allergic reaction which is induced when an agent is first applied to the skin and is elicited upon continued exposure which may occur immediately or after a long period of seemingly harmless exposure.
The sensitization may be local, elicited by topical exposure, which manifests itself as contact dermatitis accompanied by blistering, itching, reddening and burning at the site of application. More seriously, the sensitization may be systemic, elicited by topical application but manifesting itself by more general allergic reactions at sites othe
Campbell Patricia S.
Nelson Melinda K.
Yum Su Il
Alza Corporation
Date Vandana
Webman Edward J.
LandOfFree
Formulations for transdermal delivery of pergolide does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Formulations for transdermal delivery of pergolide, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Formulations for transdermal delivery of pergolide will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3112192