Formulations for the administration of fluoxetine

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Nitrogen containing other than solely as a nitrogen in an...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S449000

Reexamination Certificate

active

06512010

ABSTRACT:

FIELD OF INVENTION
This invention relates to sustained release formulations for the safe and efficacious administration of fluoxetine for, among other things, the treatment of depression. More particularly, the invention relates to novel methods, compositions, and devices for transdermally administering fluoxetine to a subject through a body surface or membrane over a sustained time period. A preferred embodiment is directed to the transdermal administration of fluoxetine at reduced skin irritation levels.
BACKGROUND OF THE INVENTION
Fluoxetine, (±)-N-methyl-&ggr;-[4-(trifluoromethyl)-phenoxy]benzenepropanamine, is one of the 3-aryloxy-3-phenylpropylamine compounds described in U.S. Pat. No. 4,314,081. Additionally, U.S. Pat. No. 4,626,549 discloses a method of blocking the uptake of monoamines such as serotonin by brain neurons in animals comprising administering a “monoamine blocking amount” of a 3-aryloxy-3-phenylpropylamine compound, such as fluoxetine. It is a potent, highly selective reuptake inhibitor of serotonin (5-hydroxytryptamine) and is indicated for the treatment of depression and obsessions and compulsions related to obsessive-compulsive disorder (OCD). As an antidepressant or for the treatment of OCD, fluoxetine is administered orally as a solution or in tablets as fluoxetine hydrochloride (Prozac®) in 10 mg or 20 mg daily doses and has an elimination half-life of from 1-9 days, averaging about 2-3 days. Other methods for the production of fluoxetine and new intermediates are disclosed in U.S. Pat. No. 5,225,585. All of the above mentioned patents are hereby incorporated in their entirety by reference.
Fluoxetine is a racemic mixture (50/50) of R-fluoxetine and S-fluoxetine enantiomers. The delivery of the S(+) enantiomer is disclosed in the prior art. For example, U.S. Pat. No. 5,104,899 discloses a method of treating depression in a human patient comprising administering the S(+) enantiomer of fluoxetine in substantially optically pure form. PCT application WO 95/28152 discloses methods for treating or improving memory, and for treating sexual dysfunction, while avoiding the unwanted adverse toxic or psychological effects associated with the racemic mixture of fluoxetine, comprising administering a therapeutically effective amount of S(+) fluoxetine or a pharmaceutically acceptable salt thereof, substantially free of its R(−) stereoisomer.
The use of fluoxetine for indications other than treating depression is also disclosed in the following: U.S. Pat. Nos. 4,594,358, 4,647,591, 4,683,235, 4,940,585, 4,999,382, 5,151,448, 5,356,934, 5,446,070, 5,589,511, and PCT Application WO 92/18005. Transdermal delivery as a route of administering fluoxetine is mentioned in these patents, though specific formulations or delivery regimens are nowhere disclosed. Other uses of fluoxetine are disclosed in U.S. Pat. Nos. 4,035,511, 4,083,982, 4,329,356, 4,444,778, 4,590,213, 4,895,845, and 5,589,512, all of which do not disclose the transdermal administration route.
Additionally, U.S. Pat. No. 5,601,839 discloses transdermal formulations for enhancing dermal penetration of a basic drug, including fluoxetine, comprising a matrix formulation comprising an amount of the basic drug and a permeation enhancer consisting essentially of triacetin in a polymer layer, preferably a pressure sensitive adhesive.
The oral administration of fluoxetine in the treatment of depression is initiated with a 20 mg/day dose administered in the morning. If no improvement is observed over several weeks, the dosage may be increased, though not to exceed 80 mg/day. Doses above 20 mg/day should be administered once a day in the morning or by a b.i.d. schedule (morning and noon).
The transdermal route of parenteral delivery of drugs and other biologically active agents (“agents”) has been proposed for a wide variety of systemically acting and locally acting agents on either a rate-controlled or non-rate-controlled basis and is described in numerous technical publications such as the following: U.S. Pat. Nos. 3,598,122; 3,598,123; 3,731,683; 3,797,494; 4,031,894; 4,201,211; 4,286,592; 4,314,557; 4,379,454; 4,435,180; 4,559,222; 4,573,995; 4,588,580; 4,645,502; 4,704,282; 4,788,062; 4,816,258; 4,849,226; 4,904,475; 4,908,027; 4,938,759; 4,943,435; 5,004,610; 5,122,382; 5,141,750; 5,314,694; and 5,342,623, the disclosures of which are incorporated in their entirety herein by reference.
When first investigated in depth in the late 1960's, the transdermal route of administration appeared to offer many advantages, particularly with respect to agents that had short half lives and therefore required frequent, repeated dosing or were subject to a high degree of first-pass metabolism by the liver when orally administered. The peaks and valleys in blood concentration resulting from frequent periodic doses of short half-life agents would be eliminated and replaced by substantially constant plasma concentration. This would not only improve individual compliance but also would eliminate the alternating periods of high side-effects and ineffective blood concentrations associated with period dosing. Administering the agent through the skin directly into the blood stream would also eliminate first-pass metabolism of orally administered agents.
It was initially assumed, theoretically, that any short half-life agent of high potency and skin permeability would be suitable for safe and effective transdermal administration. This assumption, however, has not been proven true.
The failure of the transdermal route to fulfill the initial expectations of its potential as an administrative portal was primarily due to the incredible variety of properties with which nature has endowed the skin to permit it to perform its function as the primary barrier to prevent the ingress of foreign substances into the body. See Transdermal Drug Delivery: Problems and Possibilities, B. M. Knepp, et al, CRC Critical Reviews and Therapeutic Drug Carrier Systems, Vol. 4, Issue 1 (1987) and Transdermal Delivery Systems: A Medical Rationale, Gary W. Cleary,
Topical Drug Bioavailability. Bioequivalence, and Penetration
, Plenum Press, 1993.
Thus, the transdermal route of administration, rather than being available to every short half-life agent of high potency and skin permeability, was found to be available only to those few agents that possess the proper combination of a host of characteristics, most of which are unpredictable, required to render the agent suitable for safe and effective transdermal administration.
The most significant of these characteristics are the following:
1. Skin Permeability. The permeability of the skin to the agent must be sufficiently high so that the agent can be administered at a therapeutically effective rate through an area of skin no greater than about 200 cm
2
and preferably no greater than 50 cm
2
. The person-to-person variation in skin permeability at similar sites should also be considered. U.S. Pat. Nos. 4,568,343, 4,746,515, 4,863,738, 4,865,848, 4,888,354, 5,378,730, 5,641,504 and WO 95/09006, WO 95/01167, WO 96/37231, and WO 96/40259 are related to various compositions and methods for enhancing permeation of drugs through the skin and are hereby incorporated in their entirety by reference.
2. Skin Binding. The skin beneath the transdermal delivery device has the capability of creating a skin depot of drug by absorbing, adsorbing, or binding a certain amount of agent. The amount of agent so bound must be supplied to the skin before the agent can be delivered into the blood stream at steady, therapeutically effective rates. If large amounts of the agent are bound in the skin, significant delays in the onset of therapeutic effect (“lag time”) will be observed together with corresponding delays and termination of effect upon removal of the device. The potential also exists for toxic quantities of potent agents to be contained within the skin beneath the device. Skin binding is not related to skin permeability. Agents that are highly permeable may also be highly bound ca

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Formulations for the administration of fluoxetine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Formulations for the administration of fluoxetine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Formulations for the administration of fluoxetine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3040159

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.