Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Particulate form
Reexamination Certificate
2000-03-10
2003-02-18
Levy, Neil S. (Department: 1616)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Particulate form
C424S484000, C424S486000, C424S488000, C424S490000, C424S491000, C424S493000, C424S497000, C424S499000, C424S501000, C424S422000, C424S426000, C424S468000, C424S430000, C424S434000, C424S437000, C514S817000, C514S818000
Reexamination Certificate
active
06521259
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is related to biodegradable controlled release formulations for the administration of locally active drugs, in particular, local anesthetics and compositions and methods for augmenting the potency and duration of the same.
While compounds utilized as general anesthetics reduce pain by producing a loss of consciousness, local anesthetics act by producing a loss of sensation in the localized area of administration in the body. The mechanism by which local anesthetics induce their effect, while not having been determined definitively, is generally thought to be based upon the ability to interfere with the initiation and transmission of the nerve impulse. The duration of action of a local anesthetics is proportional to the time during which it is in actual contact with the nervous tissues. Consequently, procedures or formulations that maintain localization of the drug at the nerve greatly prolong anesthesia.
All local anesthetics are toxic, i.e., potentially toxic, and therefore it is of great importance that the choice of drug, concentration, rate and site of administration, as well as other factors, be considered in their use. On the other hand, a local anesthetic must remain at the site long enough to allow sufficient time for the localized pain to subside.
Different devices and formulations are known in the art for administration of local anesthetics. For example, U.S. Pat. Nos. 4,725,442 and 4,622,219 (Haynes) are directed to microdroplets of methoxyflurane-containing microdroplets coated with a phospholipid prepared by sonication, which are suitable for intradermal or intravenous injection into a patient for inducing local anesthesia. Such microdroplets are said to cause long-term local anesthesia when injected intradermally, giving a duration of anesthesia considerably longer than the longest acting conventional local anesthetic (bupivacaine).
U.S. Pat. No. 5,188,837 (Domb) relates to a microsuspension system containing lipospheres having a layer of a phosphohipid imbedded on their surface. The core of the liposphere is a solid substance to be delivered, or the substance to be delivered is dispersed in an inert vehicle. The substance to be delivered can be, e.g., nonsteroidal anti-inflammatory compounds, local anesthetics, water insoluble chemotherapeutic agents and steroids.
Other formulations directed to injectable microcapsules, etc. are known. For example, U.S. Pat. No. 5,061,492 related to prolonged release microcapsules of a water-soluble drug in a biodegradable polymer matrix which is composed of a copolymer of glycolic acid and a lactic acid. The microcapsules are prepared as an injectable preparation in a pharmaceutically acceptable vehicle. The particles of water soluble drug are retained in a drug-retaining substance dispersed in a matrix of the lactlc/glycolic acid copolymer in a ratio of 100/1 to 50/50 and an average molecular weight of 5,000-200,000. The injectable preparation is made by preparing a water-in-oil emulsion of aqueous layer of drug and drug retaining substance and an oil layer of the polymer, thickening and then water-drying.
U.S. Pat. No. 4,293,539 (Ludwig, et al.) is directed to controlled release formulations comprised of a microbial agent dispersed throughout a copolymer derived from lactic acid and glycolic acid. The copolymer is derived from 60-95% lactic acid and 40-5% glycolic acid by weight, and has a molecular weight of 6,000-35,000. An effective amount of the copolymeric formulation is administered by subcutaneous or intramuscular administration.
WO 94/05265 describes improved biodegradable controlled release systems consisting of a polymeric matrix incorporating a local anesthetic for the prolonged administration of the local anesthetic agent. The devices are selected on the basis of their degradation profiles: release of the topical anesthetic in a linear, controlled manner over the period of preferably two weeks and degradation in vivo with a half-life of less than six months, more preferably two weeks to avoid localized inflammation. The disclosure states that an anti-inflammatory can be incorporated into the polymer with the local anesthetic to reduce encapsulation for optimal access of drug to its site of action. The anti-inflammatories that are said to be useful include steroids such as dexamethasone, cortisone, prednisone, and others routinely administered orally or by injection.
Several non-glucocorticoids have been reported to prolong the action of local anesthetics. Epinephrine in immediate release form is art known to briefly prolong the action of immediate release local anesthetics by inducing vasoconstriction adjacent to the site of injection. However, the duration of prolongation provided by immediate release epinephrine is on the order of about an hour, at best, in a highly vascularized tissue. This strategy is also severely limited by the risk of gangrene due to prolonged impairment of blood flow to local tissues. Dextrans and alkalinizing agents have also been suggested as local anesthesia prolonging agents, but have heretofore been reported to be ineffective for this purpose (Bonica et al., 1990, “Regional Analgesia With Local Anesthetics”
THE MANAGEMENT OF PAIN,
Second Edition, Volume II, Published, Lea & Febiger, Chapter 94, pages 1890-1892).
Colchicine has been shown to suppress injury-induced ectopic nerve discharge in a model system of chronic pain utilizing injured nerve (Wall et al. (Eds), 1995, Textbook of Pain, Third Edition, Publ., Churchill Livingston, pages 94-98; Devol et al., 1991,
A Group Report: Mechanisms of neuropathic pain following peripheral injury.
In: Basbaume A I, et al (eds).
Towards a New Pharmacotherapy of Pain,
Dahlem Konferenzen, Wiley, Chichester pp 417-440; Devor et al., 1985,
Pain,
22:127-137 at 128 and Devor, 1983,
Pain,
16:73-86). It has been reported in one study that colchicine was given for the treatment of low-back pain, although oral colchicine has been shown to be ineffective for the same indication (Schnebel et al., 1988, Spine 13(3):3547). However, it has not heretofore been known to use colchicine to prolong local anesthesia.
Thus, it has not previously been known to combine or otherwise administer both a controlled release local anesthetic and a non-glucocorticosteroid agent for augmenting the duration of local anesthesia.
OBJECTS AND SUMMARY OF THE INVENTION
It is an object of the present invention to provide a biodegradable controlled release dosage form for providing prolonged local anesthetic treatment of localized areas in humans and animals. More particularly, it is an object of the invention to provide a local anesthetic in a biocompatible, biodegradable controlled release form which provides a prolonged local anesthesia.
It is a further object of the present invention to provide a method for prolonging the effect of a local anesthetic agent at a desired site of treatment which is safe, effective, and which effectively controls post-operative pain.
It is a still further object to prolong the duration of the local anesthesia produced by administering an augmenting agent, before, during or after administration of a local anesthetic according to the invention, to a topical site or after infiltration, injection or implantation of the compositions according to the invention.
In accordance with the above-mentioned objects and others, the invention is related to biodegradable and/or bioerodable controlled release formulations for the administration of a local anesthetic agent capable of providing a prolonged effect in vivo, in combination with a pharmaceutically acceptable augmenting agent which is effective to prolong the duration of the local anesthetic effect for a time period greater than that possible by the use of the local anesthetic in controlled release form by itself (without the augmenting agent) and methods for the manufacture thereof are disclosed. The controlled release formulation can be formed into slabs, rods, pellets, microparticles, (e.g., microspheres, microcapsules), spheroids and pastes. Pref
Burch Ronald M.
Chasin Mark
Goldenheim Paul
Sackler Richard
Tigner Joseph
Davidson Davidson & Kappel LLC
Euro-Celtique S.A.
Levy Neil S.
LandOfFree
Formulations and methods for providing prolonged local... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Formulations and methods for providing prolonged local..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Formulations and methods for providing prolonged local... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3142586