Formulation of adenovirus for gene therapy

Chemistry: molecular biology and microbiology – Virus or bacteriophage – except for viral vector or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S239000, C435S243000, C435S260000

Reexamination Certificate

active

06689600

ABSTRACT:

BACKGROUND OF THE INVENTION
A. Field of the Invention
The present invention relates generally to the fields of molecular biology, virus production and gene therapy. More particularly, it concerns methods for the formulation of highly purified lyophilized and liquid adenovirus particles stable for long-term storage. An important embodiment of the present invention is the use of such long-term storage virus preparations for gene therapy treatments of viral disease, genetic disease and malignancies.
B. Description of Related Art
Viruses are highly efficient at nucleic acid delivery to specific cell types, while often avoiding detection by the infected hosts immune system. These features make certain viruses attractive candidates as gene-delivery vehicles for use in gene therapies (Robbins and Ghivizzani; 1998; Cristiano et al., 1998). Retrovirus, adenovirus, adeno-associated virus (AAV), and herpes simplex virus are examples of commonly used viruses in gene therapies. Each of the aforementioned viruses has its advantages and limitations, and must therefore be selected according to suitability of a given gene therapy (Robbins and Ghivizzani; 1998).
A variety of cancer and genetic diseases currently are being addressed by gene therapy. Cardiovascular disease (Morishita et al., 1998), colorectal cancer (Fujiwara and Tanaka, 1998), lung cancer (Roth et al., 1998), brain tumors (Badie et al., 1998), and thyroid carcinoma (Braiden et al., 1998) are examples of gene therapy treatments currently under investigation. Further, the use of viral vectors in combination with other cancer treatments also is an avenue of current research (Jounaidi et al., 1998).
Viral particles must maintain their structural integrity to be infectious and biologically active. The structural integrity of a viral vector often is compromised during the formulation process, thus precluding its use as a gene therapy vector. Adenoviruses for gene therapy traditionally have been formulated in buffers containing 10% glycerol. Formulated adenovirus is stored at <−60° C. to ensure good virus stability during storage. This ultra-low temperature storage not only is very expensive, but creates significant inconvenience for storage, transportation and clinic use. There is an urgent need to develop new formulation for adenovirus that can be stored at refrigerated condition.
Lyophilization has been used widely to improve the stability of various viral vaccine and recombinant protein products. It is expected that the long-term storage stability of adenovirus can be improved by reducing the residual water content (moisture) in the formulated product through lyophilization. However, there have not been reported studies on the lyophilization of live adenovirus for gene therapy.
Generally it is assumed that adenovirus will not maintain its infectivity when stored at refrigerated condition in a liquid form for extended period of time. As a result, there are no reported studies on formulating and storing adenovirus at refrigerated condition in a liquid form. Thus, there remains a need for long-term storage stable formulations of viral preparations.
SUMMARY OF THE INVENTION
The present invention addresses the need for improved, storage stable viral formulations, and methods for the production thereof, for use in gene therapy. In particular embodiments, a pharmaceutical adenovirus composition comprising adenovirus particles and, the excipients including a bulking agent and one or more protectants, wherein the excipients are included in amounts effective to provide an adenovirus composition that is storage stable. In preferred embodiments, the adenovirus composition has an infectivity of between 60 and 100% of the starting infectivity, and a residual moisture of less than about 5%, when stored for six months at 4° centigrade.
In one embodiment, the adenovirus composition is a freeze dried composition. In particular embodiments, the bulking agent in the freeze dried adenovirus composition forms crystals during freezing, wherein the bulking agent is mannitol, inositol, lactitol, xylitol, isomaltol, sorbitol, gelatin, agar, pectin, casein, dried skim milk, dried whole milk, silcate, carboxypolymethylene, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methhylcellulose or methylcellulose.
In certain embodiments, the bulking agent in the freeze dried adenovirus composition is mannitol. In other embodiments the composition is further defined as an aqueous composition comprising mannitol in a concentration of from about 1% to about 10% (w/v). In another embodiment, the aqueous composition comprises the mannitol in a concentration of from about 3% to 8%. In a preferred embodiment, the aqueous composition comprises mannitol in a concentration of from about 5% to 7%.
In certain embodiments, the freeze dried composition is prepared from an aqueous composition comprising a bulking agent in a concentration of from about 1% to 10% (w/v). In other embodiments the freeze dried composition is prepared from an aqueous composition comprising a bulking agent in a concentration of from about 3% to 8%. In yet other embodiments, the freeze dried composition is prepared from an aqueous composition comprising a bulking agent in a concentration of from about 5% to 7%.
In particular embodiments, pharmaceutical excipients serve as a protectants. In one embodiment, the protectant is further defined as a cryoprotectant. In certain embodiments, the cryoprotectant is a non-reducing sugar. In particularly defined embodiments the non-reducing sugar is sucrose or trehalose. In preferred embodiments the non-reducing sugar is sucrose.
In certain embodiments, the composition is further defined as an aqueous composition comprising a non-reducing sugar in a concentration of from about 2% to about 10% (w/v). In other embodiments, the aqueous composition comprises the sugar in a concentration of from about 4% to 8%. In still other embodiments, the aqueous composition comprises the sugar in a concentration of from about 5% to 6%.
In one embodiment, the freeze dried composition is prepared from an aqueous composition comprising a non-reducing sugar in a concentration of from about 2% to 10% (w/v). In other embodiments, the freeze dried composition is prepared from an aqueous composition comprising a non-reducing sugar in a concentration of from about 4% to 8%. In yet other embodiments, the freeze dried composition is prepared from an aqueous composition comprising a non-reducing sugar in a concentration of from about 5% to 6%.
In another embodiment, the cryoprotectant is niacinamide, creatinine, monosodium glutamate, dimethyl sulfoxide or sweet whey solids.
In certain embodiments, the protectant includes a lyoprotectant, wherein the lyoprotectant is human serum albumin, bovine serum albumin, PEG, glycine, arginine, proline, lysine, alanine, polyvinyl pyrrolidine, polyvinyl alcohol, polydextran, maltodextrins, hydroxypropyl-beta-cyclodextrin, partially hydrolysed starches, Tween-20 or Tween-80. In a preferred embodiment, the lyoprotectant is human serum albumin.
In certain embodiments, the composition is further defined as an aqueous composition comprising the lyoprotectant in a concentration of from about 0.5% to about 5% (w/v). In another embodiment, the aqueous composition comprises the lyoprotectant in a concentration of from about 1% to about 4%. In still another embodiment, the aqueous composition comprises the lyoprotectant in a concentration of from about 1% to about 3%.
In particular embodiments, the freeze dried composition is prepared from an aqueous composition comprising a lyoprotectant in a concentration of from about 0.5% to 5% (w/v). In other embodiments, the freeze dried composition is prepared from an aqueous composition comprising a lyoprotectant in a concentration of from about 1% to 4%. In another embodiment, the freeze dried composition is prepared from an aqueous composition comprising a lyoprotectant in a concentration of from about 1% to 3%.
In one embodiment, pharmaceutical excipients defined as protectants, comprise both a lyoprot

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Formulation of adenovirus for gene therapy does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Formulation of adenovirus for gene therapy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Formulation of adenovirus for gene therapy will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3335932

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.