Surgery – Diagnostic testing – Measuring or detecting nonradioactive constituent of body...
Reexamination Certificate
2001-08-10
2003-10-14
Nasser, Robert L. (Department: 3736)
Surgery
Diagnostic testing
Measuring or detecting nonradioactive constituent of body...
C600S347000, C600S365000, C600S300000, C707S793000
Reexamination Certificate
active
06633772
ABSTRACT:
TECHNICAL FIELD
The present invention relates to the formulation of analyte data points, derived data, and data attributes into one or more databases, the databases themselves, and the manipulation of those databases to produce useful information regarding factors correlated with analyte data.
BACKGROUND OF THE INVENTION
Previously, measurement of analyte levels in an individual was inconvenient and time consuming. For example, monitoring blood glucose levels in a diabetic formerly required a diabetic subject to obtain a blood sample, test that sample using e.g., a HemoCue® (Aktiebolaget Leo, Helsingborg, Sweden) clinical analyzer. Such methods typically require a finger-stick for each measurement. As a result, testing of blood glucose levels was seldom performed more frequently than 2 times per day. Such testing does not provide a complete picture of the fluctuations of glucose levels. In addition, unless the subject manually recorded the blood glucose level measured, that information was preserved only in the subject's memory. Further information regarding other factors that could affect the user's blood glucose levels, such as food intake, physical activity, etc., were similarly lost. Written records were reliable only to the extent the subject was diligent about recording information accurately and consistency. Hence, formulation of a database comprising (1) data points (e.g., measured analyte levels) and (2) information associated with each data point (e.g., the date and time of the measurement; activities affecting analyte levels such as food or water intake or physical exertion; and drug administration), was previously difficult. Further, even if obtainable, the accuracy and precision of such databases was suspect.
The present invention provides a novel method of formulating analyte data databases, analyte data databases themselves, and methods of manipulating the analyte data databases to produce useful information, e.g., for analyzing factors suspected of affecting analyte levels and investigating the efficacy of drug action for a large number of experimental subjects.
SUMMARY OF THE INVENTION
The present invention relates to methods of formulating analyte data databases (comprising, analyte data points, derived data, and data attributes), the analyte data databases themselves, and to methods for manipulating and analyzing the analyte data databases.
In one aspect the present invention relates to methods of formulating one or more analyte data databases (comprising, analyte data points, derived data, and data attributes). The databases may comprise information obtained for one or more analytes. In one embodiment of the methods, analyte measurement values are collected from one or more subject using an analyte monitoring device for each subject. The analyte monitoring device may comprise a transdermal sampling device. Typically, the analyte monitoring device is capable of providing frequent analyte measurement values, wherein the analyte measurement values comprise acquired data points that are specifically related to analyte amount or concentration in the subject. These data points may be acquired at selected time intervals. One or more analyte data databases are then formulated by associating each of the data points with one or more data attributes.
In a further embodiment, the data points comprise derived data determined from one or more acquired data points and the derived data are associated with the data points from which they are derived. Further, the derived data may be associated with one or more data attributes.
Analyte measurement values used in these methods may be collected from a single individual or from more than one individual. An analyte monitoring device is used by each individual during the course of obtaining the analyte measurement values. The analyte measurement values (as well as data points, derived data, and data attributes) may be compiled into one or more analyte data databases. When multiple databases are formulated, the data points collected from a single individual are typically associated with one or more relevant data attributes. The data from each individual is then compiled into a large, communal database (e.g., a data warehouse). Further, relationships may be established between the data points, derived data, and data attributes from different individuals. In addition, population databases may be formulated that comprise compilations of derived data from more than one individual (e.g., mean analyte measurement values across a selected population) as well as associated data attributes. Such population databases may be used for comparisons between different populations (e.g., males/females, different races, different age groupings, etc.).
In one embodiment of the present invention the analyte is a biological analyte, e.g., glucose. The data points may, for example, be signal measurements related to the amount or concentration of the analyte. In this case, analyte amount or concentration may itself be a derived data point. The analyte monitoring device may be capable of detecting one or more analyte. Alternatively, more than one monitoring device may be used to generate data for use in formulating the analyte data databases of the present invention. In one aspect, the analyte is at least glucose and the analyte monitoring device comprises a glucose monitoring device. A number of glucose monitoring devices may be used in the practice of the present invention. In a preferred embodiment, the glucose monitoring device comprises a transdermal sampling device, a sensing device, a display, and means to provide an audible alert when glucose levels in a subject being monitored are outside of a predetermined range. The sensing device may, for example, comprise electrochemical devices, optical, chemical devices, and combinations thereof. In one aspect the sensing device comprises an electrochemical sensor and the acquired data points comprise electrochemical signals.
Data attributes include, but are not limited to, the following: chronological information, user perspiration levels, device operating temperature, missed measurements; skipped measurements, user body temperature, user skin conductance, environmental variables, alarm events, activity codes, total excursion, mean value, statistical function, subject code, demographic information, physical characteristics, and disease-associated characteristics.
The present invention also comprises an analyte data database formulated by the above method. For example, an analyte data database may be formulated from data points collected using an analyte monitoring device, the analyte monitoring device (i) comprising a transdermal sampling device, and (ii) providing frequent analyte measurement values. The analyte measurement values may comprise data points that are specifically related to analyte amount or concentration. In the database, the data points are associated with one or more relevant data attributes.
The present invention also includes methods for manipulating one or more analyte data database. Such methods of manipulating the databases of the present invention are described in greater detail herein below. For example, one such method comprises one or more analyte data database of the present invention and manipulating the data points via the attributes associated with the data points to determine relationships between the data points and the attributes. Alternatively, or in addition to the previous method, using one or more analyte data databases of the present invention, the attributes may be manipulated via the data points associated with the attributes to determine relationships between the attributes and the data points.
These and other embodiments of the present invention will readily occur to those of ordinary skill in the art in view of the disclosure herein.
REFERENCES:
patent: 4703756 (1987-11-01), Gough et al.
patent: 4803625 (1989-02-01), Fu et al.
patent: 5247666 (1993-09-01), Buckwold
patent: 5251126 (1993-10-01), Kahn et al.
patent: 5279543 (1994-01-01), Glikfeld et a
Ford Russell
Lesho Matthew J.
Potts Russell O.
Tierney Michael J.
Wei Charles W.
Cygnus Inc.
Fabian Gary
McClung Barbara
Nasser Robert L.
LandOfFree
Formulation and manipulation of databases of analyte and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Formulation and manipulation of databases of analyte and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Formulation and manipulation of databases of analyte and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3171578