Stock material or miscellaneous articles – All metal or with adjacent metals – Having metal particles
Reexamination Certificate
2001-09-04
2003-05-06
Mai, Ngoclan (Department: 1742)
Stock material or miscellaneous articles
All metal or with adjacent metals
Having metal particles
C428S550000, C419S002000, C419S008000, C419S009000, C431S329000
Reexamination Certificate
active
06558810
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to a simplified process for producing sintered porous metal fiber mats used as gas burners and filters. More particularly, the invention involves dispersing metal fibers in a viscous aqueous solution and vacuum molding the viscous aqueous metal fiber dispersion prior to sintering the molded metal fibers.
Prior proposals for producing sintered metal fiber gas burners are set forth in U.S. Pat. No. 3,173,470 to Wright, and U.S. Pat. No. 4,597,734 to McCausland et al. While Wright describes the metal fibers and the mat formed thereof in some detail, he has little to say about how to form a uniform layer of the fibers. Specifically, Wright states: Although the manner of forming the sintered fiber mat does not form any part of this invention, one method that can be used is to distribute the previously sized fibers in a uniform layer onto a pallet.
The disclosure of McCausland et al mentions metal fibers that may be woven or randomly packed to form a felt. Specific reference is made to felt panels made according to a proprietary process, trade name Bekipor, from fibers of an iron, chromium and aluminum alloy.
Both patents do not discuss the difficulties of forming a uniform layer or a felt of metal fibers that will have uniform porosity for proper performance as a gas burner or filter. In short, there is need for a simple method of depositing metal fibers as a layer or mat of uniform porosity.
Accordingly, a principal object of this invention is to provide a simple process for depositing metal fibers in layers that can be sintered to provide filters and gas burner elements or faces of uniform porosity.
Another important object is to utilize highly developed technology to lay the metal fibers in mats of uniform porosity.
These and other features and advantages of the invention will be apparent from the description that follows.
SUMMARY OF THE INVENTION
In accordance with this invention, a method of forming porous layers or mats of sintered metal fibers suitable for use as burner faces or as filters comprises the novel and essential steps of dispersing the metal fibers in a viscous water solution of a cellulose ether and vacuum molding the viscous dispersion of metal fibers on a foraminous support. The vacuum molded layer of metal fibers on the foraminous support may be pressed or compacted. Residual cellulose ether is then eliminated from the wet layer of metal fibers by washing or combustion prior to sintering the metal fibers.
Widely practiced, vacuum molding creates a pressure drop across the foraminous support by reducing the pressure on the side opposite that on which the fiber mat is formed. However, as also known, the pressure drop can also be created by increasing the pressure of the viscous dispersion of fibers supplied to the foraminous support. Both methods achieve pressurized filtration of the viscous dispersion of metal fibers with consequent fiber mat formation. while vacuum molding (pressure drop at best about 14.7 pounds per square inch) is generally adequate and favored, forced filtration by pumping the fiber dispersion against the foraminous support at higher pressure may be desirable as with a higher viscosity fiber dispersion. Thus, the invention uses pressurized filtration of the viscous dispersion of metal fibers either by supplying the dispersion to the foraminous support at elevated pressure (e.g., 30 pounds per square inch) or by applying vacuum to the discharge side of the support.
Elimination of cellulose ether from the vacuum molded metal fibers by washing is easily effected by vacuum washing, i.e., drawing clean water through the mat of metal fibers by vacuum. Vacuum washing should be conducted before residual solution of cellulose ether in the metal fiber mat dries because dry cellulose ether is difficult to redissolve. Vacuum washed metal fiber mats are readily prepared for sintering by complete evaporation of residual water. Of course, vacuum washing can be replaced by forced washing, i.e., pumping water at elevated pressure through the metal fiber mat.
Alternative elimination of cellulose ether from vacuum molded metal fibers merely involves subjecting the molded metal fibers to high temperature combustion with excess oxygen to ensure complete combustion of the cellulose ether. Generally, vacuum washing is easier and hence is the preferred way of eliminating residual cellulose ether.
A vacuum molded layer or mat of metal fibers which has been completely freed of residual cellulose ether either by washing or combustion is ready for sintering. The sintering art is well known and varies with the composition of the selected metal fibers. Therefore, no claim of invention is made for sintering, per se. In fact, prior steps in the process, such as vacuum molding, are also well developed procedures. Invention resides in the novel combination of those procedures.
Basic to this invention is the use of one or more water soluble cellulose ethers to form a viscous aqueous solution thereof in which metal fibers can be dispersed so that the aqueous dispersion can be vacuum molded on a foraminous support as a layer of uniform porosity. Water-soluble cellulose ethers have an ether linkage between a cellulose radical and a solubilizing radical. Methylcellulose and hydroxypropyl methylcellulose are commercially prominent water-soluble cellulose ethers available in tonnage quantities. Other examples of water-soluble cellulose ethers are carboxymethyl cellulose, hydroxyethyl cellulose, methyl ethyl cellulose, and ethyl hydroxyethyl cellulose.
Water-soluble cellulose ethers are produced in various viscosity grades. Viscosity grade is the viscosity of a 2% aqueous solution of the cellulose ether measured at 20° C. with an Ubbelohde viscosimeter in millipascal-seconds equivalent to centipoise. For example, hydroxypropyl methylcellulose is sold in various viscosity grades ranging from 15 to 100,000 centipoises.
Ideally, the selected viscosity of the water solution of a cellulose ether used to disperse a chosen type of metal fibers can be attained with a smaller quantity of a higher viscosity grade of that cellulose ether. For example, a 1% water solution of hydroxypropyl methylcellulose having a viscosity grade of 50,000 centipoises has a viscosity of about 1500 centipoises (all viscosities determined at 20° C.). In each case, minimization of cellulose ether consumption, by selection of higher viscosity grade must be weighed against possibly higher price for higher viscosity grade. Minimum concentration of cellulose ether in the aqueous solution is also desirable in that less residual cellulose ether needs to be washed away or burned off the mat of metal fibers formed by vacuum molding the aqueous viscous dispersion thereof.
The viscosity of the aqueous solution to be used for dispersing a selected type of metal fibers therein should accommodate two opposite desiderata: high enough to keep the dispersed metal fibers as a reasonably uniform suspension and low enough to facilitate the separation of the solution from the metal fibers during the vacuum molding procedure. Simple tests with the selected metal fibers and aqueous cellulose ether solutions of different viscosities can be performed to determine a practical compromise viscosity that serves the aforesaid opposite desiderata.
It is well known that a pore former may be used to provide desired porosity of the vacuum molded mat of metal fibers. Fine particles of methyl methacrylate is a prominent example of pore former. The pore former is dispersed like the metal fibers in the viscous aqueous solution of cellulose ether. By heating the vacuum molded layer or mat of metal fibers deposited on the foraminous support, the methyl methacrylate is eliminated by vaporization and combustion.
A burner face of sintered metal fibers produced by this invention can provide flameless surface combustion and is notable for structural ruggedness, radiant efficiency, and low emissions of nitrogen oxides (NOx), carbon monoxide and unburned hydrocarbons. The strength of the sintered metal fiber
Garbo Paul W.
Mai Ngoclan
LandOfFree
Forming sintered metal fiber porous mats does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Forming sintered metal fiber porous mats, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Forming sintered metal fiber porous mats will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3078317