Formed shape made of regenerated cellulose and process for its p

Plastic and nonmetallic article shaping or treating: processes – Vacuum treatment of work

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

264187, 2642108, 26421114, 26421117, 1062001, 1062002, 1062003, D01F 202

Patent

active

057923990

DESCRIPTION:

BRIEF SUMMARY
The invention concerns formed shapes, in particular fibers or films, made of cellulose regenerated by the amino oxide procedure, and a process for producing these formed shapes.
One knows how to produce cellulose-based forming and spinning masses by dissolving cellulose in amino oxides--preferably N-methylmorpholine N-oxide--and a non-solvent for cellulose, preferably water. By forming into threads and/or formed shapes, orienting, and regenerating the cellulose, one obtains products with multiple applications in the textile and non-textile area (W. Berger, "Moglichkeiten und Grenzen alternativer Alternative Cellulose Dissolution and Forming!, Lenzinger Berichte 74 (1994) 9, pp. 11-18).)
Furthermore one knows of attempts to change the properties of the cellulose products by admixing polymeric second components. Among the descriptions we have those of additions of aliphatic and aromatic polyamides soluble in the amino oxide and of polyacrylonitrile (B. Morgenstern, "Polymermischungen auf Cellulosebasis-ein Weg zur Avenue for Modifying Properties!, Conference, International Symposium, Rudolstadt, Sep. 7-8, 1994). So far, these admixtures have not led to any significant changes in the framework of properties of cellulose products.
It is furthermore known that by admixing small amounts of low-molecular-weight substances, one can achieve more or less clear-cut improvements in the stability of cellulose-based forming and spinning masses. These compounds involve those with at least four carbon atoms containing at least two conjugated double bonds and at least two hydroxyl and/or amino groups (EP 0047919, DD 229708, DE 4106029). Furthermore, it is said that nitrogen-containing substances such as urea, hydroxylamine, hydrazine; sulfur-containing substances such as sulfides, thiosulfates and thioureas; and carbon-containing reducing substances, such as aldehydes and sucrose have an analogous effect (DD 158656). Further known is the treatment of cellulose threads and/or fibers, after the forming of the cellulose-based spinning mass and regeneration of the cellulose, with bifunctional and/or polyfunctional compounds, such as dicarboxylic acids, methylol compounds and cyanide chloride, which react with the hydroxyl groups of the cellulose. The crosslinking obtained in this fashion is said to lead to a greater wet-abrasion resistance of the cellulose threads and fibers. A significant disadvantage of this direct crosslinking of the cellulose molecule consists in a clear-cut increase in brittleness, which significantly makes textile processing of the fibers more difficult or even completely impossible. Finally, it is known to also use diisocyanates for the finishing of pure cotton fabrics. However, this does not produce the properties which can be achieved with N-methylol compounds (Textilveredelung 20, (1985), p. 44).
The present invention addresses the task of creating a formed shape, in particular a fiber or a film, made of cellulose regenerated by the amino oxide process, which features new and advantageous properties, compared to the conventional formed shapes, made of regenerated cellulose according to the amino oxide process. Not only that: from the cellulose regenerated according to the amino oxide process, there are to be created formed shapes which have improved properties, compared to the known formed shapes made by that process. In particular, the new formed shapes are to have an anion-exchange properties and fungistatic properties. Not only that: the absorptive capacity for dyes is to be improved and expanded. It is furthermore the objective of the present invention to create formed shapes, in particular fibers and films, made of regenerated cellulose with improved wet abrasion resistance. Furthermore there are to be produced formed shapes of cellulose made according to the amino oxide process, such as fibers and films, whose cellulose undergoes less polymer degradation during the process than do the cellulose-based formed shapes made according to the conventional amino oxide process. Finally, a formed shape m

REFERENCES:
Abstract of German Democratic Republic 274,435 (Published Dec. 20, 1989).
Abstract of Japan 52-26, 561 (Published Feb. 28, 1977).
Abstract of Japan 63-282,307 (Published Nov. 18, 1988).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Formed shape made of regenerated cellulose and process for its p does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Formed shape made of regenerated cellulose and process for its p, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Formed shape made of regenerated cellulose and process for its p will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-386041

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.