Format for recording data in a storage disk

Dynamic information storage or retrieval – Binary pulse train information signal – Format arrangement processing for auxiliary information

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C369S275300

Reexamination Certificate

active

06738333

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a format used for storing data in a memory storage disk and more specifically an optical storage disk. This invention also relates to an optical storage disk that contains both mastered and writeable areas.
BACKGROUND OF THE INVENTION
Data storage disks, and in particular optical data storage disks, are widely used for a number of purposes. For example, downloading data via computer networks such as the Internet onto data storage disks is becoming increasingly popular. The downloaded data may include movies, music recordings, books, and other media. There are different types and sizes of data storage disks available for storing and accessing the downloaded information.
A number of benefits can be achieved using a data storage disk which can economically provide both mastered information and the ability to write or record information. As used herein, “mastered information” refers to information in which content is incorporated (embossed) into the disk during the manufacture thereof. The information is typically represented by a series of pits or bumps in the reflective layer which alter the reflectivity of the layer and therefore can be detected by the read/write head as the track of pits or bumps passes beneath it. A common example of an optical disk is the well-known Compact Disc (CD), in which the information, normally music, is mastered prior to distribution.
A data storage device, e.g., a disk drive, which includes a read/write head is used to write information onto the disk and to read information from the disk. The disk drive is associated with a host device which uses the data read from the disk by the drive and which supplies data to be recorded by the disk drive onto the disk. A single host device may be coupled to more than one disk drive. Most prior art disk drives, including hard disk drives, floppy disk drives, and write once read many (WORM) disk drives (such as CD-R and DVD-R drives) are classified as “block level” devices. The drive itself simply reads or writes “blocks” of data pursuant to instructions from the host device, and is not concerned with the organization of the data blocks into files and directories.
Conventional storage disks assign specific areas for writing data files and for storing file system information or attributes (location, size, etc,) relating to the data files. This practice restricts the use of the disk. For example, a user who stores one large data file needs a relatively small area for storing file system information. In contrast, a user who stores numerous small data files requires proportionally more storage space for storing the file system information.
Conventional optical disk drives read and write data from an inner diameter (“ID”) of the disk towards an outer diameter (“OD”) of the disk and at a constant linear track velocity. The data may be stored in a single spiral track formed about the center of the disk and the disk rotated in an angular direction such that a read/write head following the track moves outward towards the OD of the disk. Alternatively, the data may be stored in concentric circular tracks, in which case the read/write head “jumps” outward to the next track after each rotation of the disk.
For example, a conventional CD has a first annular zone located near the ID of the disk that is reserved for a “table of contents” and a second annular zone located radially outward from the table of contents that is reserved for data. The data is written on a spiral track in a direction from the ID to the OD of the disk. Before any data can be read, the disk must be accelerated to a relatively high rotational velocity, using considerable power, so that the table of contents can be read. Moreover, if one or two very large files are recorded in the data zone, the table of contents area will remain unfilled. Conversely, if there are numerous small data files, the table of contents will fill up before the data zone. In either case, precious storage space is wasted.
In order to read the data at a constant linear track velocity, the storage disk must be rotated at a variable speed, e.g., more rapidly near the ID. Hence, more power is consumed in reading data at the ID than at the OD. In portable, battery-operated storage devices (for example, digital cameras, Palm Pilot™ personal digital assistants, and other similar devices), minimizing power consumption is critical to maximizing battery life. Moreover, the need to accelerate the disk to a relatively high rotational speed increases the amount of time required to access the data.
Conventional storage devices typically store data in fixed block sizes. For example, in DVD optical storage devices each block necessarily contains 32K bytes of data. This can be very wasteful of storage space. Writing a single check mark or fact, for example, normally does not require 32K bytes. Similarly, a “linking sector” containing timing information (described below) must precede the data written during each write session. Linking sectors do not require anywhere near 32K bytes of data. Moreover, file system information must also occupy 32K bytes. Allocating 32K bytes to system data relating to a single file can waste memory space. If, for example, the file or file system data contains only 100 bytes, almost the entire 32K bytes of storage capacity (i.e., 31.99K bytes) remains empty.
Accordingly, there is a need for a storage device and storage medium that is compact and portable, power-efficient, and capable of efficiently storing and transmitting large amounts of data regardless of the size of the individual data files.
SUMMARY OF THE INVENTION
A data storage disk in accordance with this invention comprises a writeable area which includes a servo track for guiding a write head. The writeable area includes a writeable system area adjacent an inner boundary of the writeable area; and a writeable data area adjacent an outer boundary of the writeable area. Typically, the writeable system area includes information (attributes) relating to data files stored in the writeable data area. There is no fixed boundary between the writeable system area and the writeable data area.
Initially, there is a blank area between the writeable system area and the writeable data area. As additional file system information is written on the inner diameter (ID) side of the blank area and additional data files are written on the outer diameter (OD) side of the blank area, the blank area shrinks in size. If additional file system information and additional data files continue to be written, ultimately the writeable system area and the writeable data area merge, and the blank area disappears. Whenever that happens, the writeable area will be fully utilized. No storage space will be wasted.
The invention also includes a method of writing data on a data storage disk having a writeable area comprising a writeable system area and a writeable data area, the writeable data area being located radially outward from the writeable system area, the writeable system area and the writeable data area being separated by a blank region. The method includes the steps of writing file system information in a first portion of the blank region located adjacent the writeable system area; and writing a data file in a second portion of the blank region located adjacent the writeable data area. The file system information includes an attribute of the data file. The file system information and data file are written in a direction from the OD of the storage device towards the ID of the storage device.
Writing file system information and data files in this way optimizes the usage of the writeable area, as compared with disk formats that have fixed areas reserved for file system information and data files, respectively, and wherein no additional data can be written once either the file system area or the data area is filled. In this case, there is normally storage space left in the other area and this space is wasted. In a disk formatted in accordance with this invention, the writeable system area and

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Format for recording data in a storage disk does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Format for recording data in a storage disk, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Format for recording data in a storage disk will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3216757

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.