Force sensor having hollow cylindrical flexible element

Measuring and testing – Dynamometers – Responsive to force

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06813966

ABSTRACT:

BACKGROUND OF THE INVENTION
The present application relates to a force sensor, in particular, for the detection of forces on a motor vehicle seat, which, under the use of electrical or electromagnetic effects, emits an electrical signal, which corresponds to active pressure, pulling, or bending forces.
In many areas of mechanics, force sensor are necessary, which also should make possible an accurate determination of the pulling and/or pressure force on inaccessible points on apparatuses or aggregates. An electrical signal corresponds to the force measurement should be available for further evaluation or regulating processes. In the area of automobile electronics, for example, such types of force sensor can be used favorably, whereby the force sensor that have been used up to this point are, for the most part, relatively large and the manufacturing process is relatively expensive.
For individual, important electronic systems in motor vehicles, such as, for example, for seat belt systems, a smaller and compact force sensor is required. Directly on the connection points between the components in which the force concentrates, force measuring bolts a components of the force sensor are of particular interest. For example, for the seat weight force measuring and its distribution, which is measured on the connection to the seat, a force sensor is necessary, which is to be made in large numbers of pieces to be cost-effective. However, also in the manufacturing and quality measuring technology, one requires increasingly accurate, determinate measuring force sensors.
For example, a force sensor is known from DE 35 15 126 A1, in which a magnet if mounted to a free end of a bar-shaped element, whose position changes upon an outer load of the mounting element relative to a magnetic field-sensitive sensor element. In this manner, the sensor element is arranged fixed in a region of a bearing position of the mounting element and produced an electrical signal depending on the change of the magnetic field.
In addition, a measurement received for recognition of movement in a vehicle seat is known from WO 00/16054 A1, in which between an upper support enclosing the seat shell and a lower support on the vehicle floor, likewise, also attached via a length and height adjustment mechanism, an elastic deformation of a mounting element is determined with the measuring cell.
In the non-published DE 102 16 723.0, another force measurer is describe, in particular, for seat weight measurement in a motor vehicle, in which a magnet and a sensor element are arranged fixedly to one another in a force absorbing element and with an impact, changes by means of the force to be sensed a distance to an adjacently arranged ferromagnetic material.
SUMMARY OF THE INVENTION
A force sensor of the above-described type, in particular, for the determination of the forces on a vehicle seat, has a force-absorbing element between two support parts. Here, a force measuring cell for measuring the forces is arranged between the support parts, for example, the seat rails and the seat rocker, whereby the force measuring cell has a magnetic field-sensitive sensor element. The force measuring element contains a hollow-cylindrical flexible element, for example, in the form of a bolt, which based on the force effect to be detected, causes an affect of the magnetic field in the area of the magnetic field-sensitive sensor element of the force measuring cell. The hollow-cylindrical flexible element contains a bar with a magnet on its free end attached to a relative stationary end on a first support part.
With the force measuring cell, the magnetic field-sensitive sensor element, for example, a Hall element or a similar magneto-resistive or inductive sensor, can be moved to the field of the magnet by the force acting on the other support part and also on the flexible element. In addition, it is advantageous that the flexible element held on the first support part projects into a top held on the other support part, whereby the top has a radially extending inner collar in an area of mounting to the other support part. The inner collar radially overlaps a widening of the diameter of the flexible element in the interior of the top.
The inventive top for the flexible element, for a bolt as a flexible element, is therefore so construed that this can be joined together from the side with the bolt, and in this manner, the rotationally symmetrical inner collar can be conned to the widening of the diameter of the bolt. The inner collar, therefore, can be dimensioned in an advantageous manner, such that in the case of breaking of the volt-flexible element, for example, with a bad accident of the vehicle, with a use on a vehicle seat attachment, the bolt is not longer separated by the axial limit stop of the inner collar and the vehicle seat remains fixed on the seat rails.
In addition, an impact is absorbed in the vertical direction by the inner collar, whereby the impact essentially can take place more effectively with a smaller residual moment. The inner collar, also in the case of a horizontal transverse force, leads to an impact between the inner collar and the bolt, whereby the constructive design is more advantageous.
The bolt top can also be clamped in a simple manner on the seat rocker as the other support part between a locking ring or a locking clamp and an outer radial widening on the top. This has the particular advantage that the bolt can be more easily built into and dismantled from a pre-assembled vehicle seat. In addition, the top can be designed such that this can be mounted without a threading of the connecting cable of the sensor element, for example, a Hall-IC or its plug.
Also the attachment of the bolt to the seat bar as the first support part can be improved in a simple manner in this regard, in that the bolt-flexible element is guided through the first support part, here the seat rail, from outside and is provided on this end with a groove for receiving a locking ring for attachment.
In addition, it is advantageous if the end of the bolt-top abutting the seat rocker as the other support part and opposite the seat rail comes with a ring seal between the seat rail and the seat rocker. In this manner, very simply and effectively, a sealing of the bolt and in particular, also the gap between the bolt top, the bolt, and the seat rail can take place for an overload impact.
According to a further advantageous embodiment, the bar with the magnet attached to the relative stationary end on the first support part is a separate cylindrical component, whose material selection is independent from its magnetic characteristics and the material of the flexible element. In this regard, the magnet and, for example, a Hall-IC as the sensor element, can be separately mounted and the sensitivity and the material selection for the bolt as the flexible element are simplified.


REFERENCES:
patent: 4159641 (1979-07-01), Hawkes
patent: 4255975 (1981-03-01), Debreuille
patent: 5459902 (1995-10-01), Hino et al.
patent: 35 15 126 (1986-10-01), None
patent: 102 16 723 (2002-03-01), None
patent: 00/16054 (2000-03-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Force sensor having hollow cylindrical flexible element does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Force sensor having hollow cylindrical flexible element, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Force sensor having hollow cylindrical flexible element will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3282914

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.