Force feedback interface with selective disturbance filter

Computer graphics processing and selective visual display system – Display peripheral interface input device – Cursor mark position control device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S161000

Reexamination Certificate

active

06310605

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to interface devices for allowing humans to interface with computer systems, and more particularly to computer interface devices that allow the user to provide input to computer systems and allow computer systems to provide force feedback to the user.
Users interact with computer systems for a variety of reasons. A computer system typically displays a visual environment to a user on a display output device. Using an interface device, a user can interact with the displayed environment to perform functions and tasks on the computer, such as playing a game, experiencing a simulation or virtual reality environment, using a computer aided design system, operating a graphical user interface (GUI), or otherwise influencing events or images depicted on the screen. Common human-computer interface devices used for such interaction include a joystick, mouse, trackball, stylus, tablet, pressure-sensitive ball, or the like, that is connected to the computer system controlling the displayed environment. Typically, the computer updates the environment in response to the user's manipulation of a user-manipulatable physical object such as a joystick handle or mouse, and provides visual and audio feedback to the user utilizing the display screen and audio speakers. The computer senses the user's manipulation of the user object through sensors provided on the interface device that send locative signals to the computer. For example, the computer displays a cursor or other graphical object in a graphical environment, where the location of the cursor is responsive to the to the motion of the user object. The user can thus control the location of the cursor by moving the user object.
In some interface devices, tactile and/or haptic feedback is also provided to the user, more generally known as “force feedback.” These types of interface devices can provide physical sensations which are felt by the user manipulating a user manipulable object of the interface device. For example, the Force-FX joystick controller from CH Products, Inc. and Immersion Corporation may be connected to a computer and provides forces to a user of the controller. Other systems might use a force feedback mouse controller. One or more motors or other actuators are coupled to the joystick and are connected to the controlling computer system. The computer system controls forces on the joystick in conjunction and coordinated with displayed events and interactions by sending control signals or commands to the actuators. The computer system can thus convey physical force sensations to the user in conjunction with other supplied feedback as the user is grasping or contacting the joystick or other object of the interface device. For example, when the user moves the manipulatable object and causes a displayed cursor to interact with a different displayed graphical object, the computer can issue a command that causes the actuator to output a force on the user object, conveying a feel sensation to the user.
The use of a user-controlled cursor in a graphical environment is well suited for use with force feedback. For example, a cursor that is moved into a displayed surface will be felt as a collision into a hard surface to the user because the actuator pushes back on the user object as the cursor is pushed against the displayed surface. Or, a user may move a cursor into a defined region on the graphical display and feel a vibration force on the user object as confirmation that the cursor is positioned within that region.
Other embodiments of force feedback systems do not involve control of a cursor. For example, a force feedback joystick can be used in video game applications, such as to fly a simulated aircraft. Sensors on the joystick allow the user to influence motion of the airplane, while actuators on the joystick allow the user to feel realistic force sensations. For example, the aircraft is flown into a simulated storm, where the host computer issues a force command that causes the actuators to create a feel of turbulence. This turbulence shakes the joystick in a convincing manner coordinated with the simulated storm.
A current problem with the prior art force feedback interfaces is that certain force sensations imposed by the actuator(s) on the user object cause a graphical object to move in undesired ways. For example, a vibration sensation imposed on a cursor control interface may cause the user object to shake. This, in turn, causes the cursor to shake or “jitter” on the screen because the cursor position is based on sensor readings describing the position of the user object. Such vibrations may cause the user difficulty in positioning the cursor at a desired position or “target” in the graphical user interface. Or, a turbulence sensation imposed on a joystick interface during a flight simulation game may cause the user object to shake, which in turn makes the airplane fly erratically since the airplane trajectory is based on locative signals derived from the position or motion of the user object. These undesired displayed effects can be referred to as “disturbances” due to their interfering effect on the position of a controlled graphical object or entity.
A different way to describe this problem is to view an actuated interface device as a user manipulatable object interfaced to a host computer through both input and output channels. The input channel transmits the locative data from the interface device to the host computer, where the data is used by the host to position simulated objects. The output channel transmits the force feedback sensations imposed on the user manipulatable object in response to host commands. Because the force feedback sensations (output) can disturb the user object and therefore disturb the sensor readings (input), the input and output channels are coupled. This coupling causes the problems outlined above, such as hindering a user's ability to accurately control a cursor or play a video game using the interface device.
SUMMARY OF THE INVENTION
The present invention is directed to a force feedback interface which provides a selective disturbance filter for providing selective reduction or elimination of displayed disturbances associated with certain output force sensations.
More specifically, the present invention relates to a force feedback interface device that implements a selective disturbance filter for reporting filtered data to a host computer system. which implements and displays a graphical environment. The interface device includes a user manipulatable object contacted by a user and movable in physical space in a degree of freedom, such as a mouse or joystick. A sensor detects the movement of the user object in the degree of freedom and outputs sensor signals representative of the movement. An actuator applies output forces in the degree of freedom of the user object as controlled by force signals. A microprocessor, separate from the host computer, receives host commands from the host computer and outputs the force signals to the actuator for controlling the output force. The microprocessor also receives the sensor signals from the sensors and reports locative data to the host computer derived from the sensor signals and indicative of the movement of the user manipulatable object. The host computer updates a position of a displayed user-controlled graphical object based on at least a portion of this reported locative data. The microprocessor also implements a selective disturbance filter of the present invention for modifying the locative data reported to the host computer when the output force would cause a disturbance to the user-controlled graphical object.
A “disturbance” occurs when input and output are tightly coupled so that an output force sensation affects the position of the user object such that the host computer would display the user controlled graphical object in an undesired location or with an undesired motion in the graphical environment. In some embodiments, the user controlled graphical obj

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Force feedback interface with selective disturbance filter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Force feedback interface with selective disturbance filter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Force feedback interface with selective disturbance filter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2586249

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.