Footing forms for concrete monolith construction

Static molds – In situ construction engineering type or building type-mold... – Forming building structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C249S033000, C249S045000, C052S274000, C052S293300, C052S309120

Reexamination Certificate

active

06332599

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention pertains to static molds generally, and more particularly to molds used in the simultaneous formation of footings and walls of a monolithic cast static structure such as a commercial building or a home. The structure will most preferably be molded from concrete, though other materials could also find application.
2. Description of the Related Art
The building trade has been a part of history through all time. A seemingly infinite number of structures have been designed, frequently capitalizing on materials plentiful to a particular area or region. Dwellings have been constructed structurally from such plant based materials as straw, bamboo and wood, and have evolved to include “two by” natural lumber and engineered material construction. Various adobe, rock and earthen materials are also used, and brick and concrete are fabricated for the building trade from raw materials taken from the earth with minimal processing. Ice and snow have been used in the construction of igloos, and, in fact, even various natural formations such as caves have been converted to dwellings.
Buildings provide shelter for inhabitants and their possessions against the elements of nature. As recorded cumulative knowledge has expanded through time and experiences, mankind has learned to identify desirable features of a dwelling, including such things as resistance to storm and flood waters, extreme winds and temperatures, and even insects, rodents and other uninvited creatures of nature. In many regions and localities around the world, the wisdom and experience gained through time has been codified into various building regulations to help ensure safety and protection of a region's citizens and inhabitants. Whether legislatively mandated or not, it is most preferred that dwellings offer resistance to the environment, even in the case of an infrequent event such as severe weather, fire, flooding or other natural disaster. In addition, it is desirable that the building structure offer durability through as much time as possible, by resisting aging brought on by time and the elements. Low cost and simple construction are also desired, but may not always be associated with a particular material or structure.
One material which is associated with many desirable features is concrete, particularly when the concrete is further reinforced with steel. Steel reinforced concrete structures tend to be incredibly resistant to the elements, surviving incredible winds, floods, fires, ground contact, insects and extreme temperatures. As a result, concrete will last for many years and will survive most of the disasters that all too often destroy other buildings. In a reasonably designed and suited location, the life expectancy of concrete is measured in centuries rather than years. In fact, concrete in many applications may only be outlasted by relatively massive stone construction, which is far more expensive, much less available and far harder to convert into a building than concrete. Furthermore, and in part due to its massiveness, concrete offers other advantages such as thermal and physical mass which aid in wind and storm resistance and also provide a moderation of external temperatures.
In the residential construction industry, concrete is the material of choice for most footings and foundations, and many basement walls. In these below grade projects, standard timbers will not withstand ground contact. Furthermore, the surrounding soil will most often also be quite massive, and the structure needed to withstand ground forces and hydraulic pressures will desirably be quite rugged.
Nevertheless, concrete has been slow to gain widespread use in the above-ground home construction industry, even though frequently used for foundations and basements. In no significant part this has been due to the cost of constructing an above-ground structure from concrete. Heretofore, in order to cast the concrete into the shape of a building or dwelling, the concrete had to be retained in some type of a static mold. These molds have, in the past, been manufactured from wood at the job site, or, in some cases, from steel or aluminum for more long term use by concrete workers. In the case of wood molds, a form is required on the inside surface of the concrete and also on the outside surface. As a result, concrete required a full, double-wall timber construction prior to pouring the concrete. The effort required to construct such a double wall is less than but similar to that required to entirely fabricate a wood two-by structure. Once the static forms are assembled or built, then the concrete must be poured, and, finally, the molds torn down and removed. Furthermore, and unlike with a foundation, seams need to be sealed or protected in some way to prevent the finished concrete from also showing the seam. So, in the prior art timber-based molds, concrete effectively required as much or even more labor and lumber as that required to assemble a lumber house, and then further required the expenses associated with the concrete and pouring. In short, concrete has been a significantly more expensive building material than lumber.
Metal forms manufactured from aluminum and steel have also been devised for casting concrete walls at a job site. Unfortunately, these molds tend to be very expensive, and frequently, due to their size and weight, require special cranes or cable-type lifts to raise and lower the forms. Once a form is placed, various fasteners must be anchored to the surrounding mold forms. When the concrete casting is complete, fasteners must be removed and molds again raised and lowered by cranes and removed from the job site to storage. Once again, the labor associated with this construction, not to mention the additional machinery, exceeds that which would be required for the standard timber construction, therefore driving the cost of the building up once again and reducing the demand for such alternative materials. Furthermore, these massive forms undesirably require substantial storage space when not in use.
Appearance is also an issue with concrete. The casting of concrete can be fairly difficult, and the possibility of a less-than-perfect finished exterior is great. As aforementioned, seams must not be allowed to show, which requires eliminating or hiding the seams in the molds. Furthermore, in the event of an error or flaw, patching or repairing concrete is quite difficult and undesirable. Finally, concrete is not conducive to the placement of utilities such as electrical wiring or plumbing using standard techniques.
Thermal characteristics of concrete, which can be a benefit, also may be a detriment. Exposed concrete surfaces, while acting as a thermal mass, can also be a site for undesirable condensation on a hot and humid day. Concrete does not itself act as a very good thermal insulator, and so may be quite cold on a cold day and get undesirably warm on a hot day.
As a result of the expenses associated with molding and shaping, the difficulties of working with utilities and alterations subsequent to casting, and the issues associated with thermal conductivity and condensation, concrete has traditionally found limited application. Concrete has been reserved for buildings which justify the additional cost as a result of the unique benefits obtained with the material. For example, many schools have been built from concrete, anticipating that the school building will be used for many years to come and desiring that the building provide a safe and durable structure that may also serve the additional purposes of storm shelter, community building, etc. Commercial properties are often manufactured from concrete, for reasons mimicking those for schools. Nevertheless, the methods available for molding the concrete were simply not cost effective for most residential or single-story construction projects.
More recently, a new type of foamed resin form has been devised for molding concrete. This type of form is illustrated, for example, in U.S. Pat. No. 5,896,714

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Footing forms for concrete monolith construction does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Footing forms for concrete monolith construction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Footing forms for concrete monolith construction will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2566321

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.