Food supplements containing polyphenols

Drug – bio-affecting and body treating compositions – Designated organic nonactive ingredient containing other... – Plant extract or plant material of undetermined constitution

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S456000, C514S577000, C514S824000, C424S439000, C424S195110

Reexamination Certificate

active

06642277

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to, inter alia, to certain compositions, uses thereof, and to food supplements and drinks for human consumption containing the compositions.
BACKGROUND OF THE INVENTION
The high consumption of wine in France is thought to be an important dietary factor in the low incidence of coronary heart disease (CHD) mortality and has been suggested at least in part to provide a possible explanation for the phenomenon known as the “French Paradox” (Renaud & De Lorgeril 1992), France being an exception compared with most other countries because CHD mortality is low despite a high intake of saturated fat.
There is a considerable literature on the alleged beneficial effects of red wine in relation to prevention of coronary heart disease (CHD). Epidemiological data suggest the protection afforded by wine is superior to that of other alcoholic beverages such as beer and spirits, indicating that factors other than alcohol content in wine is contributing to the effect (St Leger et al., 1979; Renaud & De Lorgeril 1992). In a prospective study in Copenhagen, Denmark various parameters (including alcohol intake, smoking habit and body mass index) were assessed in 13,285 people succeeded by a 12 year follow-up of mortality. It was shown that low to moderate intake of wine (but not beer or spirits) was associated with lower mortality from cardiovascular and cerebrovascular diseases and other causes (Gronbaek et al., 1995). These results confirmed those previously reported in the USA (Klatsky & Armstrong, 1993).
There is growing evidence that the free radical chain reaction of lipid peroxidation involving the oxidation of low density lipoproteins (LDL) plays an important contributory role in the development of atherosclerosis and CHD (Steinberg, 1993).
Frankel et al (1993) examined the ability of dilute, dealcoholised red wine to inhibit the oxidation of human LDL in vitro, and found the wine to be very active as an antioxidant. The authors suggested that the routine consumption of red wine may “reduce oxidation of lipoproteins and reduce thrombotic phenomena”. However, the authors admitted that “we need to know more about the pharmaco-kinetics of wine flavonoids and the absorption and metabolism of wine phenols . . . if we are to evaluate further the potential role of antioxidant compounds in red wine in reducing CHD”.
Polyphenols are those compounds which include more than one phenolic group. Polyphenols occur abundantly in red wine and consist of a large number of different chemical substances of varying molecular weights. The chief polyphenol components of grapes and wine, and their concentrations, are described by Shahidi & Nazck (1995). Among the polyphenols are the following classes: flavonoids (a term often used to denote polyphenols in general, but more commonly in Europe to denote only the flavones), the flavanols, proanthocyanidins (also called procyanidols, procyanins, procyanidins and tannins) and anthocyanins.
The flavones are compounds with a basic structure shown in
FIG. 1
in which two benzene rings (A and B) are linked with a heterocyclic six member ring C containing a carbonyl group. Ring B can be joined in position 2 (as illustrated) to give a flavone or to position 3 to give an iso flavone. Hydroxylation can occur at positions 3, 5, 7 and 3′, 4′, 5′ to give compounds called flavonols. Typical examples of flavonols are: quercetin, (hydroxylated at positions 3, 5, 7, 3′, 4′), kaempferol (hydroxylated at positions 3, 5, 7, 4′), and myricetin (hydroxylated at positions 3, 5, 7, 3′, 4′, 5′). They can exist naturally as the aglycone or as O-glycosides (e.g. D-glucose, galactose, arabinose, rhamnose etc). Other forms of substitution such as methylation, sulphation and malonylation are also found.
The flavanols have a basic structure shown in FIG.
2
. The two most common flavanols are catechin (hydroxyl groups positions 5, 7, 3′, 4′) and its stereo-isomer epi-catechin. The hydroxyl groups can be esterified with gallic acid (shown in FIG.
3
). The proanthocyanidins are polymers of catechin and/or epicatechin and can contain up to 8 units or more.
The anthocyanins are coloured substances with a basic structure shown in FIG.
4
. They are sometimes called anthocyanidins. Typical examples are: cyanidin (hydroxylated at positions 3, 5, 7, 3′, 4′), delphinidin (hydroxylated at positions 3, 5, 7, 3′, 4′, 5′) and pelargonidin (hydroxylated at positions 3, 5, 7, 3′). The hydroxyl groups are usually glycosylated and/or methoxylated (e.g. malvidin at 3′, 5′).
Within the general term “polyphenols” are included the dihydroxy- or tri-hydroxy benzoic acids and the phytoalexins, a typical example of which is resveratrol (shown in FIG.
5
).
The most widely used method for the determination of LDL oxidation is to employ the transition metal copper (specifically Cu
2
+ions) as a catalyst to promote the oxidation of endogenous lipid hydroperoxides. Antioxidants present in LDL, especially alpha tocopherol, delay the oxidation process and produce a so called lag phase. The process can be easily followed in a UV spectrophotometer because the oxidation reaction produces conjugated dienes which can be continuously monitored at 234 nm (Esterbauer et al., 1989). To preserve LDL from oxidation during storage, EDTA is added to complex copper and other trace elements. This excess EDTA interferes with the copper catalysed oxidation. EDTA can be removed by dialysing the LDL preparation before addition of the copper ions or an excess of copper ions can be added to compensate for those complexed with EDTA.
The results of in vitro experiments somewhat similar to those described by Frankel et al., (Lancet 1993, cited above) were also reported by Frankel et al. (1995). The authors of this publication draw attention to the difficulty of interpreting in vitro data. Thus “Although the phenolic compounds have similar chemical properties, their reducing capacity is not a very precise predictor of their antioxidant activity. In the LDL oxidation assay and other tests for antioxidant activity, the system is typically heterogeneous and physical properties, such as lipophilicity, solubility and partition between the aqueous and lipid phases of LDL can become important in determining antioxidant activity”.
Indeed, those skilled in the art appreciate that extrapolation from in vitro findings to in vivo situations is frequently inappropriate. As an example, the reader is referred to the publication of McLoone et al, (1995), which shows that although the compound lutein has the potential to inhibit LDL oxidation in vitro, supplementation of the diet of human volunteers with lutein for 2 weeks (which gave a 6-fold increase in the levels of lutein in plasma) had no effect on LDL oxidation.
Some in vivo trials have been conducted to investigate the possible health benefits of red wine. Fuhrman et al., (1995) found that “some phenolic substances that exist in red wine, but not in white wine, are absorbed, bind to plasma LDL, and may be responsible for the antioxidant properties of red wine” and provided, in their words, the first demonstration “that red wine consumption inhibits the propensity of LDL to undergo lipid peroxidation”, and that this may contribute to attenuation of atherosclerosis. However, a study by Sharpe et al, (1995) nearly contemporaneously with those of Fuhrman et al, found that neither consumption of red wine nor white wine had any effect “on total cholesterol, triglycerides, HDL or measures of antioxidant status, including the susceptibility of LDL to oxidation”.
De Rijke et al. (1996) also investigated the matter and conducted a randomized double-blind trial. They stated that “The results of this study do not show a beneficial effect of red wine consumption on LDL oxidation”.
Thus, to summarise, there are several reports that dilute red wine can inhibit LDL oxidation in in vitro assays, but that these findings cannot necessarily be extended to the in vi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Food supplements containing polyphenols does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Food supplements containing polyphenols, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Food supplements containing polyphenols will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3162357

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.