Food information monitoring system

Thermal measuring and testing – Temperature measurement – In spaced noncontact relationship to specimen

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C374S121000, C340S870170

Reexamination Certificate

active

06817757

ABSTRACT:

BACKGROUND OF THE PRESENT INVENTION
1. Field of the Present Invention
The present invention relates generally to food information monitoring systems, and, in particular, to systems and methods of detecting a plurality of temperature and other food data at each of a plurality of remote locations in a food service facility and transmitting the data to a central monitoring station for analysis and review.
2. Background
A wide variety of food service facilities, such as food service operators, grocery stores, university kitchens, banquet halls, food manufacturers and the like, utilize various types of food storage, handling and preparation apparatuses and containers in their operations. These apparatuses and containers, collectively referred to herein as food receptacles, may include means for heating or cooling the food contained therein, and may be stationary (such as a refrigerator) or portable (such as a serving cart). Examples of such devices include, but are not limited to, blast chillers, walk-in coolers and freezers as well as smaller coolers and freezers, ice machines, docked refrigerated trucks, mobile hot and cold food serving carts, table-top food warmers and coolers, ovens and cookers. If the temperature of the food contained in a particular food receptacle is important, then each such food receptacle must be monitored on at least a periodic basis to ensure that the temperatures remain within a particular range. Oftentimes, other food conditions must be monitored as well. The facilities are frequently quite large, and frequently make use of multiple food receptacles, thus making it difficult to carry out the monitoring operations by hand. For example, a typical facility may have a main kitchen, food storage equipment, a cafeteria, banquet halls, service corridors, and the like, all of which may have food in various stages of storage or preparation. It may also be necessary to monitor the location of the food receptacles within the facility. Thus, a need has developed for a centralized food information monitoring system.
A variety of food and temperature monitoring systems have been proposed to address this need. For example, U.S. Pat. Nos. 5,900,801 and 5,939,974 to Heagle et al. disclose a universal system for monitoring and controlling remote site systems at a plurality of individual food service facilities. Each remote site system includes a network and a plurality of temperature sensors associated with refrigerators, freezers and the like. The sensors are wired into the network. Each remote site system may also may include a plurality of individual sensors and other devices, including temperature sensors, which are not associated with particular equipment or designated work stations.
U.S. Pat. No. 5,951,900 to Srnrke discloses an automatic temperature measurement-based control device for a cooking pot which may use wireless technology to transmit temperature information to a central unit. The central unit may likewise use wireless technology to communicate with a central electronic unit which in turn communicates with a controller for controlling the power or heat source for the pot. A system may incorporate more than one pot, temperature sensing device, heat source transceiver, controller, and/or heat source.
U.S. Pat. No. 6,213,404 to Dushane et al. discloses a design for a wireless, battery-operated temperature sensing device for transmitting sensed temperature information to a programmable thermostat. The temperature sensing device transmits information only periodically, and thus the device is capable of operating on the same inexpensive set of batteries for a period of months or even years. A plurality of such devices may be used to collect and transmit temperature information from particular apparatuses or locations to corresponding thermostats, or to a single thermostat.
U.S. Pat. No. 4,482,785 to Finnegan et al. discloses a refrigeration monitor system for monitoring an unattended freezer installation having a number of separate freezer compartments. The monitor system includes a network of temperature sensors arranged in the freezer compartments and connected to a common control. The connection between the sensor network and the common control may be completed using a wireless communication link.
U.S. Pat. No. 5,407,129 to Carey et al. discloses a system for monitoring the temperature and other environmental data in a poultry house and controlling temperature, etc. accordingly. The system includes a plurality of temperature sensors disposed around the interior of the poultry house. The sensors are in communication with a controller.
Finally, U.S. Pat. No. 5,460,006 to Torimitsu discloses a system for contemporaneously monitoring a variety of food storage apparatuses. U.S. Pat. No. 5,586,446 to Torimitsu discloses a system for monitoring a large number of ice making machines. U.S. Pat. No. 5,946,922 to Viard et al. discloses a system for collecting information about the operation of actual operation of food processing apparatus in a food processing plant.
Known remote food monitoring systems all suffer from a variety of significant problems. For example, one problem facing prior art food condition monitoring systems is that each known system is adapted for use in a wired environment (i.e., an environment in which the data collection portion of the system is physically connected directly to the central monitoring portion of the system) or a wireless environment, but not both. Although it has been recognized that certain systems, such as those disclosed in U.S. Pat. Nos. 5,951,900 and 4,482,785, may be produced in either wired or wireless versions, no single prior art system has been disclosed that is adaptable to either environment. Unfortunately, systems having only a single mode of communication have a number of limitations not recognized in the prior art. For example, it is often desirable for food information monitoring systems to make use of previously-existing local area networks and computers. Such networks sometimes include wireless access points for making wireless connections thereto, and sometimes do not. If a particular prior art monitoring system is to make use of one of these networks, the system must be tailored to the existing environment. Also, if a particular network is to be upgraded from a wired type to a wireless type by adding wireless access points, a corresponding conversion would be required in the components of prior art systems from a “wired” version to a “wireless” version. Thus, a need exists for a system capable of being used in either environment, while requiring little or no conversion process, and an improved method of installation based on the nature of an existing network.
Another problem with many prior art food condition monitoring systems is that they rely on the sensing devices to communicate data directly to the central collection apparatus. Wireless systems in particular are problematic because of the potential for data collisions as multiple sensing devices communicate back and forth with the central collection apparatus, and the necessity for sufficient transmission strength to ensure reliable communications, even when the sensing device is relatively distantly located from the central collection apparatus. Unfortunately, as the number of sensing devices in use in a particular food service facility increases, the propensity for data collisions increases dramatically. Further, strong transmission signals demand large amounts of power, thus either requiring the sensing devices to be “plugged in” or else severely limiting their battery life. Rather than confront the myriad issues raised by the use of wireless devices, many systems utilize dedicated wiring between each sensing device and the central collection apparatus.
Unfortunately, attempts to use some sort of intermediate unit that communicates with both the sensing devices and the central collection apparatus have shortcomings. For example, in the system of U.S. Pat. No. 5,951,900, temperature data is transmitted from a sensing device on the lid of a pan to an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Food information monitoring system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Food information monitoring system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Food information monitoring system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3363771

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.