Plastic and nonmetallic article shaping or treating: processes – With printing or coating of workpiece
Reexamination Certificate
2001-03-14
2004-12-07
Brittain, James R. (Department: 3677)
Plastic and nonmetallic article shaping or treating: processes
With printing or coating of workpiece
C024S442000, C264S167000, C264S171130, C264S172110, C264S172140, C264S173170, C264S173190
Reexamination Certificate
active
06827893
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to folded fastening assemblies and method and apparatus for producing and applying the fastening assemblies.
Fastening assemblies that carry hooks or loops are desirable as part of infant and adult diapers, surgical gowns, and other garments and wraps. Fastening assemblies typically comprise a flexible sheet-form film or non-woven web, that has a tab for connecting to an object and a tape of fastener hook elements secured to a surface of the web, forming a laminate structure. The tab of the fastening assembly is attached to one side of an object and the fastener tape is free to engage a hook-engageable surface formed on an opposite side of the object. The fastener tape is typically made of a synthetic resin that is not stretchable, and the resulting laminate is relatively stiff, does not stretch, and does not present the desired degree of cloth-like feel.
Fastening assemblies are often formed by laminating the sheet form film or web with a fastener tape and forming a tab for connecting to an object. One typical application for such fastener tabs is for diaper closure systems. The diaper is generally sold with one end of the fastener tab pre-attached to one of the sides of the diaper and the other end of the fastener tab releasably attachable to the other side of the diaper for securing the diaper around a baby.
It is desirable to provide an economical method of forming fastening assemblies that have a tab and a fastener tape. It is also desirable to provide such assemblies having integral components that achieve desired qualities, such as elasticity, flexibility and low cost and ability to be employed in existing automated assembly systems, such as systems for mass-produced diapers.
SUMMARY OF THE INVENTION
According to one aspect of the invention, a method of forming a fastening product is provided. The fastener product has a multiplicity of fastener elements extending from a strip-form base, the base including first and second attachment members for attachment of a substrate therebetween. The method includes continuously introducing molten resin to a gap defined adjacent a peripheral surface of a rotating mold roll, such that the resin forms part of the strip-form base of the product at the peripheral mold roll surface and fills an array of fixed cavities defined in the rotating mold roll to form portions of the fastener elements as projections extending from a first side of the sheet-form base. The method also includes introducing to the resin on the mold roll a sheet material folded about a longitudinal fold line to form first and second overlapping fold portions, the sheet material introduced under conditions selected to cause the second fold portion to become permanently bonded to resin of the base, while leaving the first fold portion free to be subsequently unfolded from the second fold portion about the fold line. The resin is solidified and stripped from the peripheral surface of the mold roll by pulling the projections from their respective cavities.
Variations of this aspect of the invention can include one or more of the following features. The folded material is folded about multiple fold lines separating more than two fold members. The second fold portion is bonded to the first side of the base from which the fastener elements extend. The second fold portion is bonded to a second side of the base opposite the first side from which the fastener elements extend.
In another aspect of the invention a method of forming a fastening assembly includes molding a continuous sheet-form base having a multiplicity of fastener elements integrally molded with and extending from a fastening section of a surface of the base lying generally in a plane. The base, as molded, has a non-planar undulation in which the base extends out of its plane to form a peak that extends along a longitudinal direction of the base with opposite major surfaces of the base remaining generally parallel. The undulation is elastically deformable to enable the base to stretch laterally upon application of a lateral tensile force to the fastener product.
Variations of this aspect of the invention can include one or more of the following features. The base, as molded, has multiple, parallel undulations, each undulation forming a peak. The undulations are disposed in a region adjacent the fastener elements. The undulations are molded integrally with the fastener section. The undulation is formed by a mating groove and channel of a pair of rolls defining a nip in which the base is formed. The undulation is pre-formed on a material that is introduced into a base-forming nip formed by a pair of rolls; the rolls having a mating groove and channel that accommodate the undulation.
Other variations can include coating the undulation with an elastomer and/or filling an area between adjacent peaks with an elastomer. The elastomer is selected from the group consisting of thermoplastic elastomers, thermoplastic polyurethanes, elastomeric copolymers containing polyethylene terephthalate PET, thermoplastic olefins, and natural or synthetic rubber. The fastener section is molded of resin selected from the group consisting of polyester, polyethylene, polypropylene, polyamide and copolymers and alloys thereof. The method includes forming a tab joined with the base, the tab extending laterally from the undulation along a lateral margin of the fastener assembly opposite a second lateral margin more nearly adjacent the fastening section, the tab comprising at least one flap for joining the fastener assembly to an article. The flap is formed of a section of the base molded integrally with and of the same resin as the portion having the undulation and the fastening section. The flap is formed by folding and permanently joining a portion of the base to another portion of the base. The portion of the base that is folded is thinner than other portions of the base. The Tab is formed by introducing a sheet material into a nip in which the base is molded, the sheet material being folded about a longitudinal fold line to form first and second overlapping fold portions and introduced under conditions selected to cause the second fold portion to become permanently bonded to resin of the base, while leaving the first fold portion free to be subsequently unfolded from the second fold portion about the fold line. The sheet material is bonded to a surface of the base opposite the first surface from which the fastener elements extend. The sheet material is bonded to the first surface of the base from which the fastener elements extend. The second fold portion is bonded to the base only along a margin area of an exposed surface of the second fold portion. Unbonded surface areas of the first and second fold portions are protected from contact with the resin by a protective tape forming a barrier to the resin. Unbonded surface areas of the first and second fold portions are protected from contact with the resin by a protective coating forming a barrier to the resin. The method includes forming dams along edges of the fastening section. The dams are higher than the fastener elements. The step of permanently joining is achieved by heat staking, adhesive or rf-welding together the portion of the base to another portion of the base.
In another aspect of the invention, a method of forming fastener tabs, each tab including a multiplicity of fastener elements extending from a strip-form base and first and second attachment legs for attaching the tab to a garment or substrate therebetween, is disclosed. The method includes continuously introducing molten resin to a gap defined adjacent a peripheral surface of a rotating mold roll, such that the resin forms at least a part of the strip-form base of the product at the peripheral mold roll surface and fills an array of fixed cavities defined in the rotating mold roll to form portions of the fastener elements as projections extending from a first side of the sheet-form base; while introducing a pre-formed material to the resin under conditions selected to
Brittain James R.
Fish & Richardson P.C.
Velcro Industries B.V.
LandOfFree
Folded fastener products does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Folded fastener products, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Folded fastener products will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3289489