Conveyors: power-driven – Conveyor section – Conveyor section folds to facilitate transportation or...
Reexamination Certificate
2000-02-22
2001-10-16
Ellis, Christopher P. (Department: 3651)
Conveyors: power-driven
Conveyor section
Conveyor section folds to facilitate transportation or...
C198S313000, C198S861300
Reexamination Certificate
active
06302265
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to an elongated conveyor assembly which includes a pivotal hinge assembly structurally arranged on the conveyor assembly to fold-over a portion of the conveyor assembly in a vertical plane relative to the plane of the non-folded conveyor assembly.
At the present time, elongated portable conveyor assemblies must be folded to a collapsed position to permit movement of the conveyor assembly from one job location to another. Such folding operations may include the use of a crane which supports the elongated conveyor assembly in the operative position wherein the conveyor assembly extends from a lower loading point to an elevated discharge point. When it is desired to move the conveyor assembly from one work location to another, the supporting crane must lower the elongated conveyor assembly onto the ground to permit the conveyor assembly to be folded by selectively decoupling predetermined lengths of the conveyor assembly from the remaining lengths of the conveyor to permit either vertical stacked folding or horizontal sideways folding. The resultant folded conveyor assembly may provide an accordion-type folded conveyor assembly wherein predetermined lengths of the conveyor are folded in a horizontal plane or provide a fold-over condition wherein the conveyor lengths are stacked in vertical plane with respect to the body of the conveyor assembly. However, such stacked conveyor assemblies are time consuming and expensive.
Also, if it is desired to fold the conveyor assembly in a vertical plane with respect to the body of the conveyor assembly, some prior art structures require multiple sets of hydraulic cylinders and complex folding mechanisms to lower the conveyor assembly to the ground and then fold the conveyor assembly at multiple positions along the length of the conveyor assembly. Again, such prior art structures are extremely complex and expensive and, therefore, have found limited acceptance in the marketplace.
An additional foldable framework for a belt conveyor is described in U.S. Pat. No. 5,333,725. In this patent, a foldable framework is connected to a single power operated cylinder which is operative to cause a portion of the movable support frame of the conveyor assembly to pivot about a universal joint and to position a portion of the conveyor assembly substantially in a vertical perpendicular plane with respect to the body of the non-folded portion of the conveyor assembly. In such a position, the conveyor assembly may then be stacked or stored around other equipment for transport between work sites. However, such a foldable structure does not provide a system or structure which folds a conveyor assembly in a vertical plane with respect to the body of the conveyor assembly for movement of the folded conveyor assembly between work sites.
SUMMARY OF THE INVENTION
One object of the present invention is to provide a novel hinge assembly which is adapted to be predeterminely mounted to a conveyor assembly to permit the fold-over of a portion of the conveyor assembly in a plane substantially parallel relative to the plane of the non-folded portion for transporting the conveyor assembly from one job site to another job site.
It is further object of the present invention to provide a novel hinge assembly or mechanism which is engageable with a belt conveyor assembly to permit the fold-over of one section of the belt assembly in a plane substantially parallel relative to the plane of the non-folded conveyor section through the use of a single pair of hydraulic cylinders.
It is still another object of the present invention to provide a hinge assembly or mechanism mounted to a conveyor assembly which permits the locking of the conveyor assembly in a single operative plane and which permits the positioning of a section of the conveyor assembly in a vertical stacked, substantially parallel plane with respect to the plane of the section of non-folded conveyor assembly.
In accordance with the present invention, an elongated conveyor assembly is provided for the movement of aggregate materials, such as sand, cement, grains, rock, gravel or chemicals from a lower receiving point to an upper discharge point. Generally, such conveyor assemblies can be of any length of up to approximately 100 feet and may include belt, screw or chain type conveyor assemblies. When it is desired that the elongated belt, screw or chain conveyor assembly be moved from one work site to another work site, the hinge assembly mounted to the conveyor assembly is energized to pivotally move an upper truss or forward member portion of the conveyor assembly to a fold-over position in a plane substantially parallel with respect to the plane of the lower truss or rearward member portion of the conveyor assembly. At the junction in the conveyor assembly which separates the upper truss member portion from the lower truss member portion, the hinge assembly or mechanism is mounted to the conveyor assembly.
The pivotal hinge assembly in accordance with the present invention and which provides the desired fold-over and hinge support for the upper truss member portion of the conveyor assembly relative to the lower truss member portion of the conveyor assembly is comprised of a pair of pivot frame supports structurally arranged to cooperate with the hinge structure mounted to the abutting ends of the upper truss member portion and the lower truss member portion. The pivot frame supports are, preferably, triangular in shape with the vertex angle of the pivot frame supports anchored to a bottom pivot frame member coupled to a carriage unit. The carriage unit is comprised of an axle having a pair of tires thereon and a forward extending axle brace member which secures the axle and the carriage unit relative to the elongated conveyor assembly.
The upper truss or forward member portion of the conveyor assembly is mounted and secured to the lower truss or rearward member portion of the truss assembly by the hinge assembly or mechanism. The rearward end of the upper truss member portion abuts against the forward end of the lower truss or rearward member portion of the truss assembly when the conveyor assembly is in the raised operating position. The rearward end portion of the upper truss member includes side mounted support plates thereon which support a secondary pivot shaft having two fulcrum arms keyed thereon. The secondary pivot shaft, preferably, extends from between the pair of side mounted support plates across the width of the conveyor truss frame. The forward end portion of the lower truss member portion includes plate members on opposite sides thereof which provide a primary pivot point thereon between the pivot frame support and the lower truss member portion. To each of the primary and secondary pivots, the leg members of the pivot frame supports are respectively mounted and secured thereto for rotational movement. Fulcrum arms are keyed to the secondary pivot shaft and are each respectively secured to the piston portion of hydraulic cylinders that are secured to the plate members mounted on the sides of the lower truss member portion by the cylinder support members. The cylinder support member includes an anchor bracket which secures a brace member which is mounted on the pivot frame support to a connection on the cylinder support member to maintain the pivot frame assembly in a rigid fixed condition when the belt conveyor assembly is in the elongated raised, operative position.
When it is desired to fold-over the conveyor assembly in accordance with the present invention, the hinge assembly is operatively connected to the upper and lower truss portions of the conveyor assembly and the conveyor assembly is in the planar operative position. To fold the conveyor assembly, the secondary pivot shaft and the supporting keyed fulcrum members are secured to the ends of the piston portion of the hydraulic cylinders when the piston portions are in an extended position. Before the folding operation, the brace member, secured to the pivot frame supports and attached
CMI Corporation
Deuble Mark A.
Ellis Christopher P.
Emrich & -Dithmar
LandOfFree
Fold-over conveyor assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fold-over conveyor assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fold-over conveyor assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2601161