Fold interleaver

Optical: systems and elements – Polarization without modulation – By relatively adjustable superimposed or in series polarizers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S490020, C359S490020, C359S487030, C359S900000

Reexamination Certificate

active

06563641

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to optical devices and relates more particularly to an interleaver for optical communications and the like.
BACKGROUND OF THE INVENTION
Optical communication systems which utilize wavelength-division multiplexing (WDM) and dense wavelength-division multiplexing (DWDM) technologies are well known. According to both wavelength-division multiplexing and dense wavelength-division multiplexing, a plurality of different wavelengths of light, preferably infrared light, are transmitted via a single medium such as an optical fiber. Each wavelength corresponds to a separate channel and carries information generally independently with respect to the other channels. The plurality of wavelengths (and consequently the corresponding plurality of channels) are transmitted simultaneously without interference with one another, so as to substantially enhance the transmission bandwidth of the communication system. Thus, according to wavelength-division multiplexing and dense wavelength-division multiplexing technologies, a much greater amount of information can be transmitted than is possible utilizing a single wavelength optical communication system.
The individual channels of a wavelength-division multiplexed or dense wavelength-division multiplexed signal must be selected or separated from one another at a receiver in order to facilitate detection and demodulation thereof. This separation or demultiplexing process can be performed or assisted by an interleaver. A similar device facilitates multiplexing of the individual channels by a transmitter.
It is important that the interleaver separate the individual channels sufficiently so as to mitigate undesirable crosstalk therebetween. Crosstalk occurs when channels overlap, i.e., remain substantially unseparated, such that some portion of one or more non-selected channels remains in combination with a selected channel. As those skilled in the art will appreciate, such crosstalk interferes with the detection and/or demodulation process. Generally, the effects of crosstalk must be compensated for by undesirably increasing channel spacing and/or reducing the communication speed, so as to facilitate reliable detection/demodulation of the signal.
However, as channel usage inherently increases over time, the need for efficient utilization of available bandwidth becomes more important. Therefore, it is highly undesirable to increase channel spacing and/or to reduce communication speed in order to compensate for the effects of crosstalk. Moreover, it is generally desirable to decrease channel spacing and to increase communication speed so as to facilitate the communication of a greater quantity of information utilizing a given bandwidth.
Modern dense wavelength-division multiplexed (DWDM) optical communications and the like require that network systems offer an ever-increasing number of channel counts, thus mandating the use of a narrower channel spacing in order to accommodate the increasing number of channel counts. The optical interleaver, which multiplexes and demultiplexes optical channels with respect to the physical media, i.e., optical fiber, offers a potential upgrade path, so as to facilitate scalability in both channel spacing and number of channel counts in a manner which enhances the performance of optical communication networks.
As a multiplexer, an interleaver can combine two streams of optical signals, wherein one stream contains odd channels and the other stream contains even channels, into a single, more densely spaced optical signal stream. As a demultiplexer, an interleaver can separate a dense signal stream into two, wider spaced streams, wherein one stream contains the odd channels and the other stream contains the even channels. Thus, the interleaver offers scalability which allows contemporary communication technologies that perform well at wider channel spacing to address narrower, more bandwidth efficient, channel spacings.
There are four basic types of interleavers suitable for multiplexing and demultiplexing optical signals. These include birefringent filters, thin-film dielectric devices, planar waveguides, and fiber-based devices. All of these contemporary interleaving technologies suffer from substantial limitations with respect to channel spacing, dispersion, insertion loss, channel isolation, temperature stability, cost, reliability and flexibility. For example, most commercially available interleavers provide only 100 GHz and 50 GHz channel spacings. Reduction of channel spacing to 25 GHz, 12.5 GHz and beyond appears to be difficult and challenging.
Since it is generally impractical and undesirably expensive to provide precise control during manufacturing, the actual wavelength of communication channels and the center wavelength of filters generally tend to mismatch with each other. Precise control of manufacturing processes is difficult because it involves the use of more stringent tolerances which inherently require more accurate manufacturing equipment and more time consuming procedures. The actual wavelength of the communication channel and the center wavelength of the filter also tend to drift over time due to inevitable material and device degradation over time and also due to changes in the optical characteristics of optical components due to temperature changes. Therefore, it is important that the passband be wide enough so as to include a selected signal, even when both the carrier wavelength of the selected signal and the center wavelength of the passband are not precisely matched or aligned during manufacturing and have drifted substantially over time.
Although having a wider filter passband is generally desirable, so as to facilitate the filtering of signals which have drifted somewhat from their nominal center wavelength, the use of such wider pass bands and the consequent accommodation of channel center wavelength drift does introduce the possibility for undesirably large dispersion being introduced into a filtered channel. Typically, the dispersion introduced by a birefringent filter or interleaver increases rapidly as the channel spacing is reduced and as a channel moves away from its nominal center wavelength, as discussed in detail below. Thus, as more channel wavelength error is tolerated in a birefringent filter or interleaver, greater dispersion valves are likely to be introduced.
As those skilled in the art will appreciate, dispersion is the non-linear phase response of an optical device or system wherein light of different wavelengths is spread or dispersed, such that the phase relationship among the different wavelengths varies undesirably as the light passes through the device or system. Such dispersion undesirably distorts optical signals, such as those used in optical communication systems.
The nonlinear phase response or dispersion of WDM and DWDM devices is responsible for signal distortion which results in undesired limitations on channel capability. That is, such dispersion undesirably limits the useable bandwidth of a channel, such as that of a fiber optic communication system. Such undesirable limitation of the bandwidth of a channel in a fiber optic communication system inherently reduces the bit rate of data transmitted thereby.
Contemporary interleavers have dispersion versus wavelength curves which have zero dispersion value at a particular wavelength, such as at nominal channel center wavelength. The dispersion versus wavelength curve of such contemporary interleavers departs drastically from this zero dispersion value as the wavelength moves away from the nominal channel center wavelength. Thus, small deviations in channel center wavelength can result in undesirably large dispersion values being realized.
Since, as discussed in detail above, it is extremely difficult, if not impossible, to maintain the actual channel wavelength precisely at its nominal value, such channel center wavelengths do vary, thereby resulting in undesirably large dispersion values.
Although most examples discussed above utilize equivalent birefri

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fold interleaver does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fold interleaver, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fold interleaver will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3050628

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.