Incremental printing of symbolic information – Ink jet – Ejector mechanism
Reexamination Certificate
2001-09-25
2003-09-02
Nguyen, Lamson (Department: 2861)
Incremental printing of symbolic information
Ink jet
Ejector mechanism
Reexamination Certificate
active
06612686
ABSTRACT:
TECHNICAL FIELD
This invention relates generally to the use of focused acoustic energy in the ejection of fluids in the fields of inorganic, organic, and biomolecular chemistry. Focused acoustic energy is used to effect acoustic ejection of fluid droplets of a wide variety of materials to make combinatorial libraries of, for example, molecules, alloys, and multi-component layered materials. The combinatorial libraries may be used for the discovery and evaluation of compositions of matter having useful biological, chemical and/or physical properties. A particular focus of the invention is on the systematic generation of dense microarrays having combinatorial sites as features on a substrate surface.
BACKGROUND
The discovery of novel materials having useful biological, chemical and/or physical properties often leads to emergence of useful products and technologies. Extensive research in recent years has focused on the development and implementation of new methods and systems for evaluating potentially useful chemical compounds. In the biomacromolecule arena, for example, much recent research has been devoted to potential methods for rapidly and accurately identifying the properties of various oligomers of specific monomer sequences, including ligand and receptor interactions, by screening combinatorial libraries of biopolymers including nucleotidic, peptidic and saccharidic polymers. The properties of such combinatorial products offer potential utility for a variety of applications. Biological and non-biological combinatorial libraries can potentially be employed as superconducting materials, dielectric materials, magnetic materials (including resonance probes), phosphorescent materials, fluorescent materials, radiolabeling materials, photolabile materials, thermolabile moieties, optical materials, thermoelectric materials, separatory materials (including microporous separatory materials, physicochemical separation materials, and substrate-binding capability), and the like.
For biological molecules, the complexity and variability of biological interactions and the physical interactions that determine, for example, protein conformation or structure other than primary structure, preclude predictability of biological, material, physical and/or chemical properties from theoretical considerations at this time. For non-biological materials, including bulk liquids and solids, despite much inquiry and vast advances in understanding, a theoretical framework permitting sufficiently accurate prediction de novo of composition, structure and synthetic preparation of novel materials is still lacking.
Consequently, the discovery of novel useful materials depends largely on the capacity to make and characterize new compositions of matter. Of the elements in the periodic table that can be used to make multi-elemental compounds, relatively few of the practically inexhaustible possible compounds have been made or characterized. A general need in the art consequently exists for a more systematic, efficient and economical method for synthesizing novel materials and screening them for useful properties. Further, a need exists for a flexible method to make compositions of matter of various material types and combinations of material types, including molecular materials, crystalline covalent and ionic materials, alloys, and combinations thereof such as crystalline ionic and alloy mixtures, or crystalline ionic and alloy layered materials.
The immune system is an example of systematic protein and nucleic acid macromolecular combinatorial chemistry that is performed in nature. Both the humoral and cell-mediated immune systems produce molecules having novel functions by generating vast libraries of molecules that are systematically screened for a desired property. For example, the humoral immune system is capable of determining which of 10
12
B-lymphocyte clones that make different antibody molecules bind to a specific epitope or immunogenic locale, in order to find those clones that specifically bind various epitopes of an immunogen and stimulate their proliferation and maturation into plasma cells that make the antibodies. Because T cells, responsible for cell-mediated immunity, include regulatory classes of cells and killer T cells, and the regulatory T cell classes are also involved in controlling both the humoral and cellular response, more clones of T cells exist than of B cells, and must be screened and selected for appropriate immune response. Moreover, the embryological development of both T and B cells is a systematic and essentially combinatorial DNA splicing process for both heavy and light chains. See, e.g.,
Therapeutic Immunology,
Eds. Austen et al. (Blackwell Science, Cambridge, Mass., 1996).
Recently, the combinatorial prowess of the immune system has been harnessed to select for antibodies against small organic molecules such as haptens; some of these antibodies have been shown to have catalytic activity akin to enzymatic activity with the small organic molecules as substrate, termed “catalytic antibodies” (Hsieh et al. (1993)
Science
260(5106):337-9). The proposed mechanism of catalytic antibodies is a distortion of the molecular conformation of the substrate towards the transition state for the reaction and additionally involves electrostatic stabilization. Synthesizing and screening large libraries of molecules has, not unexpectedly, also been employed for drug discovery. Proteins are known to form an induced fit for a bound molecule such as a substrate or ligand (Stryer,
Biochemistry,
4
th
Ed. (1999) W. H. Freeman & Co., New York), with the bound molecule fitting into the site much like a hand fits into a glove, requiring some basic structure for the glove that is then shaped into the bound structure with the help of a substrate or ligand.
Geysen et al. (1987)
J. Immun. Meth.
102:259-274 have developed a combinatorial peptide synthesis in parallel on rods or pins involving functionalizing the ends of polymeric rods to potentiate covalent attachment of a first amino acid, and sequentially immersing the ends in solutions of individual amino acids. In addition to the Geysen et al. method, techniques have recently been introduced for synthesizing large arrays of different peptides and other polymers on solid surfaces. Arrays may be readily appreciated as additionally being efficient screening tools. Miniaturization of arrays saves synthetic reagents and conserves sample, a useful improvement in both biological and non-biological contexts. See, for example, U.S. Pat. Nos. 5,700,637 and 6,054,270 to Southern et al., which describe a method for chemically synthesizing a high density array of oligonucleotides of chosen monomeric unit length within discrete cells or regions of a support material, wherein the method employs an inkjet printer to deposit individual monomers on the support. So far, however, miniaturized arrays have been costly to make and contain significant amounts of undesired products at sites where a desired product is made. Thus, even in the biological arena, where a given sample might be unique and therefore priceless, use of high density biomacromolecule microarrays has met resistance by the academic community as being too costly, as yet insufficiently reliable compared to arrays made by lab personnel.
Arrays of thousands or even millions of different compositions of the elements may be formed by such methods. Various solid phase microelectronic fabrication derived polymer synthetic techniques have been termed “Very Large Scale Immobilized Polymer Synthesis,” or “VLSIPS” technology. Such methods have been successful in screening potential peptide and oligonucleotide ligands for determining relative binding affinity of the ligand for receptors.
The solid phase parallel, spatially directed synthetic techniques currently used to prepare combinatorial biomolecule libraries require stepwise, or sequential, coupling of monomers. U.S. Pat. No. 5,143,854 to Pirrung et al. describes synthesis of polypeptide arrays, and U.S. Pat. No. 5,744,305 to Fodor et al. describes an
Ellson Richard N.
Mutz Mitchell W.
Nguyen Lamson
Picoliter Inc.
Reed Dianna E.
Reed & Associates
LandOfFree
Focused acoustic energy in the preparation and screening of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Focused acoustic energy in the preparation and screening of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Focused acoustic energy in the preparation and screening of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3075152