Foaming cosmetic cream

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Cosmetic – antiperspirant – dentifrice

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C510S119000, C510S129000, C510S130000, C510S137000, C510S158000, C510S159000

Reexamination Certificate

active

06733765

ABSTRACT:

BACKGROUND OF THE INVENTION
This application is based on French Patent Application Serial No. 0008085, filed Jun. 23, 2000, which is incorporated herein by reference.
FIELD OF THE INVENTION
The present invention relates to a rinsable foaming composition constituting a cream for topical application, which comprises a specific surfactant system and which exhibits good physical stability up to at least 45° C., and to its use in the cosmetic or dermatological fields, in particular as products for cleaning or removing make-up on the skin, scalp and/or hair.
Cleansing the skin is very important in caring for the face. Cleansing must be as efficient as possible since greasy residues, such as excess sebum, the daily remnants of cosmetic products, and make-up products, in particular waterproof products, accumulate in the skin folds and can block the pores of the skin and result in the appearance of spots.
Several main types of skin cleansing products are known. Foaming detergent aqueous lotions and gels, rinsable cleansing anhydrous oils and gels, and foaming creams.
Rinsable anhydrous oils and gels cleanse by virtue of the oils present in these formulations. These oils make it possible to dissolve fatty residues and to disperse make-up pigments. These products are effective and well tolerated. However, they are disadvantageous in that they are heavy, do not foam, and do not confer a feeling of freshness on application.
Foaming detergent aqueous lotions and gels cleanse by virtue of surfactants, which suspend the fatty residues and the pigments of the make-up products. They are effective and pleasant to use because they foam and because they are easy to remove. However, the lotions are generally fairly fluid, which makes them sometimes tricky to handle, and it is difficult to thicken the gels while retaining good foaming properties.
In order to obtain good foaming performance while having a thick composition, attempts have been made to prepare foaming creams. However, foaming creams are often unstable in heat.
The term “foaming creams” is understood here to mean opaque and viscous compositions often sold in a tube and generally composed of an aqueous medium comprising a mixture of surfactants, such as fatty acid salts (soaps) or anionic, nonionic or amphoteric synthetic surfactants, and of other additives, such as, for example, polymers, polyols or fillers.
These creams, intended in particular for cleansing the skin, foam when they are mixed with water. They can be used in two ways. The first use consists in spreading the cream over the hands, in applying it to the face or to the body, and then massaging it in the presence of water to develop the foam directly on the face or the body. The other possible use of this type of product consists in developing the foam in the palms of the hands before being applied to the face or the body. In both cases, the foam is subsequently rinsed off.
The majority of foaming creams currently available commercially are unstable above 40° C. This means that, if they are stored for a few days at this temperature, they exhibit macroscopic phase separation, resulting in separation into at least two phases. Creams thus phase-separated at a temperature markedly higher than ambient temperature, could be heterogeneous after returning to ambient temperature, and, thus, are unusable because of the deterioration in texture and in the foaming properties. The term “ambient temperature” is understood here to mean a moderate temperature of approximately 20 to 25° C.
It is essential for this type of product to be stable over a wide temperature range. This is because, during its life, the product can be exposed to temperatures ranging from −20° C. to +45° C. at minimum, depending upon the climatic, storage and/or transportation conditions. For example, it is necessary for a cream transported in a car to retain its stability, because of the risk of remaining exposed to the sun for a long period of time, to say at a temperature which can easily reach 50° C. It is also necessary for these foaming creams to be able to be used in hot countries without their transportation and storage presenting a problem.
It is well known that it is possible to prevent phase separation of a foaming cream by increasing the consistency of the product subjected to temperatures of +40° to +45° C. by addition of polymers or of fillers. However, in this case, the product becomes very stiff at moderate ambient temperature and no longer exhibits the properties desired for application to the skin; in particular, it becomes difficult to mix the product with water and to make it foam.
The need thus remains for a foaming cream, stable up to at least 45° C., the cream appearance of which is maintained at ambient temperature even after changing to a higher temperature and which has good foaming characteristics.
DETAILED DESCRIPTION OF THE INVENTION
The inventors have discovered that it is possible to obtain a foaming composition in the form of a cream having good stability, even at temperatures from +40 to +45° C., by using a surfactant system such that at least one para-crystalline phase of direct hexagonal or cubic type appears when the composition is heated to a temperature of greater than 30° C. and such that this paracrystalline phase remains present up to at least 45° C.
The fact that one paracrystalline phase of direct hexagonal or cubic type appears when the composition is heated to a temperature of greater than 30° C. and that this paracrystalline phase remains present up to at least 45° C., means that this phase is present at least at a temperature ranging from 30° C. to 45° C. It is also possible that the paracrystalline phase is present at temperatures above 45° C. In addition, the paracrystalline phase of direct hexagonal or cubic type may be present at higher temperatures, as well.
To obtain the required stability, it is preferable for the paracrystalline phase formed (or liquid crystal) to be of the direct hexagonal phase type. It is not necessary for this paracrystalline phase to be present at ambient temperature but it must appear above a temperature of between 30° C. and 45° C.
Foaming creams which do not exhibit a phase organization as mentioned above are not generally stable at 45° C. At this temperature, they undergo macroscopic phase separation between at least two phases and they are subsequently unsuitable for the desired use when they are again at ambient temperature.
Thus, a subject-matter of the present application is a foaming composition constituting a cream for topical application comprising, in an aqueous medium, a surfactant system such that at least one paracrystalline phase of direct hexagonal and/or cubic type appears when the temperature increases above 30° C. and such that this paracrystalline phase remains present up to at least 45° C.
The obtained composition constitutes a opaque cream which has very good cosmetic properties (softness, creaminess), gives good foam and has good stability for a long time and at elevated temperatures.
The paracrystalline phase or phases present above +30° C. can be of direct hexagonal or cubic type or can be a mixture of these two phases or a mixture of one of these phases or of both these phases with a phase of lamellar type. The paracrystalline phase(s) preferably comprise(s) at least one direct hexagonal phase.
The terms “lamellar phase”, “direct hexagonal phase” and “cubic phase” are given, in the present application, the meanings which a person skilled in the art generally gives to them.
Thus, the term “lamellar phase” (phase D according to Ekwall, see Advances in Liquid Crystals, vol. 1, page 1-143, Acad. Press, 1975, edited by G. H. Brown) is understood to mean a liquid crystal phase with plane symmetry comprising several amphiphilic bilayers arranged in parallel and separated by a liquid medium which is generally water.
The term “direct hexagonal phase” (phase F according to Ekwall, see Advances in Liquid Crystals, vol. 1, page 1-143, Acad. Press, 1975, edited by G. H. Brown) is understood to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Foaming cosmetic cream does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Foaming cosmetic cream, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Foaming cosmetic cream will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3216128

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.