Flying-type disk drive slider with wear pad

Dynamic magnetic information storage or retrieval – Automatic control of a recorder mechanism – Controlling the head

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S234700, C360S235800, C360S236300, C029S603030, C029S090010

Reexamination Certificate

active

06707631

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to the field of disk drives and, more particularly, to sliders for disk drives which are designed to fly above a rigid magnetic recording disk of the disk drive during disk drive operations.
BACKGROUND OF THE INVENTION
One way to characterize the manner in which information is recorded to and/or read from a rigid, magnetic, computer-readable storage medium (e.g., a disk) is the manner in which the magnetic recording head interfaces with the disk. Contact recording has at least been proposed to place the head and disk in direct physical contact when exchanging signals therebetween. Theoretically this maximizes the performance of the head and disk at least in relation to reading information from and writing information to the disk. Other issues have kept contact recording systems from realizing commercial success. Constant contact between the head and disk presents both wear and contamination (e.g., through generation of particulates) issues which need to be addressed by the disk drive design. Heat generated by the continuous contact between the head and disk during disk drive operations can also have an adverse effect on the accuracy of the exchange of information between the head and disk (e.g., via thermal transients or asperities). Frictional forces from the contact between the recording head and disk can also cause data transfer problems in the form of track misregistrations, as well as bit shift or jitter caused by suspension and/or air-bearing resonance excitations.
Another approach which has been utilized in commercial disk drive designs is for the magnetic recording head to fly above the surface of the rigid, magnetic disk. Typically the magnetic recording head includes a slider with a magnetic recording and/or writing element(s) carried thereby. One or more air-bearing surfaces are included on the lower surface of the slider which project at least generally toward the disk. These air-bearing surfaces are shaped/oriented on the slider body so that the boundary layer of air which is carried by the rigid disk during rotation thereof is compressed and forced to flow underneath the slider. Rotation of the disk in excess of a certain velocity will generate sufficient forces on the air bearing surfaces to lift the slider above the surface of the disk toward which the air-bearing surfaces at least generally project.
Relatively significant development efforts have been directed to the design of the air-bearing surfaces of sliders of the flying type. The problems which have been addressed by these efforts have not been simply to realize flying of the slider in spaced relation to the disk, but instead to considerations such as attempting to accurately control the fly height or to achieve a consistent fly height. Another area of focus has been to attempt to minimize the spacing between the head and disk during disk drive operations without actually having any significant contact which can have adverse effects on data transfer operations, as well as the operability of the disk drive or components thereof. Current state-of-the art, commercially available disk drives with MR/GMR heads operate with an average fly height of about 30 nanometers. However, this does not correspond with a 30 nanometer spacing between the magneto-resistive recording element and the disk. Pole-tip recession typically adds another 5-7 nanometers to the actual spacing being the recording element and the disk, as does the carbon overcoat which is typically included on the bottom surface of current flying sliders. Reducing the spacing between the flying head and rigid, rotating disk would be desirable to realize higher bit and track densities.
SUMMARY OF THE INVENTION
The present invention is generally directed to sliders which fly above a rotating, rigid computer-readable storage medium in a disk drive. Hereafter, this will be characterized as a “disk.” More specifically, the present invention is generally directed to a flying slider having a wear pad which is disposed typically at least substantially adjacent to a trailing edge of the slider and which will typically carry the sensor(s) or transducer(s) which operatively interface with the disk to read and/or write information therefrom/thereto. This wear pad is burnished during the initial operation of the disk drive to create a small gap between the slider and the disk which is in effect customized to the disk drive at issue. Principles of the present invention may be used in both contact start/stop type disk drive designs, and well as in load/unload type disk drive designs.
A first aspect of the present invention is embodied in a method for operating a disk drive which includes a rigid disk and a slider. A wear pad is disposed on a lower surface of the slider or that surface which at least generally projects toward the disk. The method includes executing a first flying step which in turn includes flying the slider a distance above the disk which is no more than the glide height or within the glide avalanche of the disk. The term “glide height” means a spacing between the disk and slider such that the slider contacts at least part of the disk (e.g., its upper surface roughness) during relative movement between the slider and disk (e.g., by rotation of the disk). While the slider is flying above the disk a distance which is no more than the glide height, the wear pad is burnished (e.g., material is removed from the wear pad). Burnishment of the wear pad is terminated and some time thereafter a second flying step is initiated, which may be immediately after the wear pad has been burnished to an appropriate degree. The slider thereafter flies above the disk a distance which is typically only slightly greater than the glide height during this second flying step such that the slider and disk remain in preferably constant spaced relation.
Various refinements exist of the features noted in relation to the subject first aspect of the present invention. Further features may also be incorporated in the subject first aspect of the present invention as well. These refinements and additional features may exist individually or in any combination. The lower surface of the slider may include at least one air bearing surface and a lifting force may be exerted thereon by rotation of the disk. While the wear pad is being burnished, the lifting forces are insufficient to dispose the slider above the disk a distance which is in excess of the glide height. Once the wear pad has been burnished, however, the lifting forces exerted on the air bearing surface(s) of the slider are sufficient so as to dispose the slider above the disk a distance which is typically slightly in excess of the glide height. Stated another way, while the disk is being rotated at a certain velocity, the slider is maintained at substantially a constant distance above the disk. This distance is selected such that the wear pad will contact the disk and will be burnished by this contact and relative movement between the disk and wear pad. Sufficient burnishment of the wear pad will eventually create a typically small gap between the slider and the disk while the disk continues to be rotated at the same velocity. Burnishing the wear pad in this manner thereby provides a typically very small gap between the slider and disk, which in turn yields a fly height of significantly reduced magnitude in relation to the known prior art. In one embodiment, the fly height is no more than about 5-6 nanometers above the mean plane of the surface roughness of the disk (i.e., the 5-6 nanometers includes the glide avalanche). Another way of characterizing this significantly reduced fly is that the fly height in relation to the subject first aspect of the present invention is only slightly greater than the glide avalanche. By disposing the read and/or write sensor in the wear pad associated with this first aspect of the present invention, the spacing between the same and the disk is also thereby reduced which enhances the operative interface therebetween (e.g., the exch

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flying-type disk drive slider with wear pad does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flying-type disk drive slider with wear pad, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flying-type disk drive slider with wear pad will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3201990

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.