Flying spot laser ablation method

Surgery – Instruments – Light application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S005000, C606S010000, C606S013000

Reexamination Certificate

active

06626898

ABSTRACT:

FIELD OF THE INVENTION
The invention relates generally to laser systems, and more particularly to a laser system used to erode a moving surface such as an eye's corneal tissue.
BACKGROUND OF THE INVENTION
Use of lasers to erode all or a portion of a workpiece's surface is known in the art. In the field of ophthalmic medicine, photorefractive keratectomy (PRK) is a procedure for laser correction of focusing deficiencies of the eye by modification of corneal curvature. PRK is distinct from the use of laser-based devices for more traditional ophthalmic surgical purposes, such as tissue cutting or thermal coagulation. PRK is generally accomplished by use of a 193 nanometer wavelength excimer laser beam that ablates away the workpiece, i.e., corneal tissue, in a photo decomposition process. Most clinical work to this point has been done with a laser operating at a fluence level of 120-195 mJ/cm
2
and a pulse-repetition rate of approximately 5-10 Hz. The procedure has been referred to as “corneal sculpting.”
Before sculpting of the cornea takes place, the epithelium or outer layer of the cornea is mechanically removed to expose Bowman's membrane on the anterior surface of the stroma. At this point, laser ablation at Bowman's layer can begin. An excimer laser beam is preferred for this procedure. The beam may be variably masked during the ablation to remove corneal tissue to varying depths as necessary for recontouring the anterior stroma. Afterward, the epithelium rapidly regrows and resurfaces the contoured area, resulting in an optically correct (or much more nearly so) cornea. In some cases, a surface flap of the cornea is folded aside and the exposed surface of the cornea's stroma is ablated to the desired surface shape with the surface flap then being replaced.
Phototherapeutic keratectomy (PTK) is a procedure involving equipment functionally identical to the equipment required for PRK. The PTK procedure differs from PRK in that rather than reshaping the cornea, PTK uses the aforementioned excimer laser to treat pathological superficial, corneal dystrophies, which might otherwise require corneal transplants.
In both of these procedures, surgical errors due to application of the treatment laser during unwanted eye movement can degrade the refractive outcome of the surgery. The eye movement or eye positioning is critical since the treatment laser is centered on the patient's theoretical visual axis which, practically-speaking, is approximately the center of the patient's pupil. However, this visual axis is difficult to determine due in part to residual eye movement and involuntary eye movement known as saccadic eye movement. Saccadic eye movement is high-speed movement (i.e., of very short duration, 10-20 milliseconds, and typically up to 1° of eye rotation) inherent in human vision and is used to provide dynamic scene to the retina. Saccadic eye movement, while being small in amplitude, varies greatly from patient to patient due to psychological effects, body chemistry, surgical lighting conditions, etc. Thus, even though a surgeon may be able to recognize some eye movement and can typically inhibit/restart a treatment laser by operation of a manual switch, the surgeon's reaction time is not fast enough to move the treatment laser in correspondence with eye movement.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a laser beam delivery and eye tracking method and system that is used in conjunction with a laser system capable of eroding a surface.
Another object of the present invention is to provide a system for delivering a treatment laser to a surface and for automatically redirecting the treatment laser to compensate for movement of the surface.
Still another object of the present invention is to provide a system for delivering a corneal ablating laser beam to the surface of an eye in a specific pattern about the optical center of the eye, and for automatically redirecting the corneal ablating laser beam to compensate for eye movement such that the resulting ablating pattern is the same regardless of eye movement.
Yet another object of the present invention is to provide a laser beam delivery and eye tracking system for use with an ophthalmic treatment laser where the tracking operation detects eye movement in a non-intrusive fashion.
A further object of the present invention is to provide a laser beam delivery and eye tracking system for automatically delivering and maintaining a corneal ablating laser beam with respect to the geometric center of an eye's pupil or a doctor defined offset from the center of the eye's pupil. A special object of this invention is the use of the laser pulses which are distributed in a pattern of discrete ablations to shape objects other than for corneal ablating.
Other objects and advantages of the present invention will become more obvious hereinafter in the specification and drawings.
In accordance with the present invention, an eye treatment laser beam delivery and eye tracking system is provided. A treatment laser and its projection optics generate laser light along an original beam path (i.e., the optical axis of the system) at an energy level suitable for treating the eye. An optical translator shifts the original beam path in accordance with a specific scanning pattern so that the original beam is shifted onto a resulting beam path that is parallel to the original beam path. An optical angle adjuster changes the resulting beam path's angle relative to the original beam path such that the laser light is incident on the eye.
An eye movement sensor detects measurable amounts of movement of the eye relative to the system's optical axis and then generates error control signals indicative of the movement. The eye movement sensor includes 1) a light source for generating light energy that is non-damaging with respect to the eye, 2) an optical delivery arrangement for delivering the light energy on a delivery light path to the optical angle adjuster in a parallel relationship with the resulting beam path of the treatment laser, and 3) an optical receiving arrangement. The parallel relationship between the eye movement sensor's delivery light path and the treatment laser's resulting beam path is maintained by the optical angle adjuster. In this way, the treatment laser light and the eye movement sensor's light energy are incident on the eye in their parallel relationship.
A portion of the eye movement sensor's light energy is reflected from the eye as reflected energy traveling on a reflected light path back through the optical angle adjuster. The optical receiving arrangement detects the reflected energy and generates the error control signals based on the reflected energy. The optical angle adjuster is responsive to the error control signals to change the treatment laser's resulting beam path and the eye movement sensor's delivery light path in correspondence with one another. In this way, the beam originating from the treatment laser and the light energy originating from the eye movement sensor track along with the eye's movement.
In carrying out this technique, the pattern constitutes overlapping but not coaxial locations for ablation to occur with each pulse removing a microvolume of material by ablation or erosion. For different depths, a pattern is repeated over those areas where increased ablation is needed. The laser pulses are usually at a certain pulse repetition rate. The subsequent pulses in a sequence are spaced at least one pulse beam width from the previous pulse and at a distance the ablated particles will not substantially interfere with the subsequent pulse. In order to maximize the speed of the ablation, the subsequent pulse is spaced sufficiently close to enable the beam to be moved to the successive location within the time of the pulse repetition. The ablation is carried out on an object until a desired specific shape is achieved.
This technique is fundamentally new and may be used on obj

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flying spot laser ablation method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flying spot laser ablation method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flying spot laser ablation method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3065241

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.