Flying optical head with dynamic mirror

Dynamic information storage or retrieval – Storage or retrieval by simultaneous application of diverse...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C369S112290, C369S112010

Reexamination Certificate

active

06414911

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to optical data storage systems and more particularly to flying optical heads for use in optical data storage systems.
2. Background Art
In a magneto-optical storage system, using a Magneto-Optical (MO) recording material deposited on a rotating disk, information may be recorded on the disk as spatial variations of magnetic domains. During readout, the magnetic domain pattern modulates an optical polarization, and a detection system converts a resulting signal from optical to electronic format.
In one type of magneto-optical storage system, a magneto-optical head assembly is located on a linear actuator that moves the head along a radial direction of the disk to position the optical head assembly over data tracks during recording and readout. A magnetic coil is placed on a separate assembly on the head assembly to create a magnetic field that has a magnetic component in a direction perpendicular to the disk surface. A vertical magnetization of polarity, opposite to the surrounding material of the medium, is recorded as a mark indicating zero or a one by first focusing a beam of laser light to form an optical spot on the disk. The optical spot functions to heat the magneto-optical material to a temperature near or above a Curie point (i.e., a temperature at which the magnetization may be readily altered with an applied magnetic field). A current passed through the magnetic coil orients the spontaneous magnetization either up or down. This orientation process occurs only in the region of the optical spot where the temperature is suitably high. The orientation of the magnetization mark is preserved after the laser beam is removed. The mark is erased or overwritten if it is locally reheated to the Curie point by the laser beam while the magnetic coil creates a magnetic field in the opposite direction.
Information is read back from a particular mark on the disk by taking advantage of the magnetic Kerr effect to detect a Kerr rotation of the optical polarization that is imposed on a reflected beam by the magnetization at the mark of interest, the magnitude of the Kerr rotation being determined by the material's properties (embodied in the Kerr coefficient). The sense of the rotation is measured by established differential detection schemes as being clockwise or counter-clockwise depending on the direction of the spontaneous magnetization at the mark of interest.
Conventional magneto-optical heads, while presently providing access to magneto-optical disks with areal densities on the order of 1 Gigabit/in
2
, tend to be based on relatively large optical assemblies which make the physical size of the head rather bulky (3-15 mm in a linear dimension). Consequently the speed at which conventional magneto-optical heads are mechanically moved to access new data tracks on a magneto-optical storage disk is slow. In addition, due to the large size of these optical assemblies, most commercially available magneto-optical disk drives use only one magneto-optical head to enable reads and writes to one side of a magneto-optical disk at a time. For example, a commercial magneto-optical storage device presently available provides access to one side of a 130 mm double sided 2.6 ISO gigabyte magneto-optical disk, a 40 ms disk access time, and a data transfer rate of 4.6 MB/Sec.
N. Yamada (U.S. Pat. No. 5,255,260) discloses a low-profile flying optical head for accessing an upper and lower surface of a plurality of optical disks. The flying optical head disclosed by Yamada uses a static mirror or prism for delivering light to and receiving light from a phase-change optical disk. While the static optics described by Yamada provides access to both surfaces of a plurality of phase-change optical disks contained within a fixed volume, use of the optics disclosed by Yamada is inherently limited by how small the optics can be made. Consequently, the number of optical disks that can be manufactured to function within a given volume is also limited. Another shortcoming relates to the use of static folding mirrors. This approach imposes a limit on track servo bandwidth by requiring the entire optical head assembly to move in order to change the location of a focused optical spot. This same limitation applies to the flying magneto-optical head disclosed by Murakami et al. in U.S. Pat. No. 5,197,050. In general, the larger the mass of the element used to perform fine track servoing, the lower the servo bandwidth becomes and the lower the track density that can be read or written.
A method for moving a folding prism or mirror with a miniature galvanometer actuator for fine tracking has been disclosed by C. Wang in U.S. Pat. No. 5,243,241. The galvanometer consists of bulky wire coils and a rotatable magnet mounted on a linear actuator arm attached to a flying magneto-optical head, but not mounted on the slider body itself. This design limits the tracking servo bandwidth and achievable track density due to its size and weight. Its complexity also increases the cost and difficulty of manufacture.
What is needed is an improved magneto-optical flying head that is compact, thus allowing an increase in the number of magneto-optical disks that can be placed within a given volume as compared to the prior art. The improved flying optical head should preferably provide a high numerical aperture, a reduced head mass, a very high resonance frequency fine track servoing device thus producing a very fine track servo bandwidth, and be relatively easy to manufacture. Additionally, the flying magneto-optical head should improve upon magneto-optical disk drive access times, data transfer rates, and usable magneto-optical disk track densities.
SUMMARY OR THE INVENTION
The present invention functions to improve data storage and retrieval in a system based on a Flying Magneto-Optical (FMO) head that preferably provides a high numerical aperture, reduced head mass, high fine track servo bandwidth, increased magneto-optical disk track density, reduced data access time, increased data transfer rates, an increase in the number of magneto-optical disks accessible in a given volume, and the ability to read and write to both sides of each disk to be used.
In the preferred embodiment, the mechanical architecture of a magneto-optical storage device incorporates a low profile head into a magneto-optical data system which uses a Winchester type rotary actuator arm, suspension, and air bearing technology. In the preferred embodiment the laser optics assembly couples an optical light source to one or more head arms which each support an optical head for writing and reading data for disk storage media. In the preferred embodiment during writing, lighting is delivered through an individual Single Mode Polarization Maintaining (SMPM) optical fiber to a respective magneto-optical head for the purpose of locally heating the surface of a rotating magneto-optical (MO) storage media, thereby producing a “hot spot.” A magnetic coil embedded in the optical head is used to produce a magnetic field that in turn spontaneously magnetizes the region within the hot spot with a vertical orientation either up or down. Thus, as the MO storage medium rotates, the applied magnetic field is modulated so as to encode digital data as a pattern of “up or down” magnetic domain orientations. During read out, light at a lower intensity is delivered from the individual SMPM optical fibers to an FMO head for the purpose of probing the rotating storage media with a focused optical spot. The readout is programmed in such a way that the magnetization direction of the medium at the location of the focused optical spot alters an optical polarization of the light via the magneto-optic KERR effect. In this way, the pattern of up or down magnetization orientations representative of the stored digital data modulates the polarization of the light reflected from the MO storage media. The reflected light signal from the storage media then couples back through the FMO head to a differential

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flying optical head with dynamic mirror does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flying optical head with dynamic mirror, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flying optical head with dynamic mirror will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2821805

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.