Fluxed composites

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C106S270000, C252S182130, C252S182180, C524S275000, C524S322000, C524S392000, C524S478000, C524S479000, C524S487000, C524S488000, C524S489000, C524S563000, C524S581000

Reexamination Certificate

active

06515057

ABSTRACT:

BACKGROUND OF THE INVENTION
The large scale industrial and commercial uses of liquid and low melting point solid bulk materials pose a multitude of practical problems. Such materials are difficult to handle; their physical properties lead to inaccurate measurements. Their physical form frequently results in a significant percentage of waste due to materials adhering to containers and handling equipment. Frequently, such materials have a limited shelf life due to decomposition. Decomposition presents a particular problem with organic peroxides which, over time, become unstable and present an explosive hazard. Low melting point solids, those solids having a melting point below 120° F., become semi-solid and usually tacky, as they approach their melting point. While this may not present a significant problem at room temperature, the ambient temperature in many plant operations may exceed 100° F. and approach the melting point of the low melting point solids. Even if the ambient temperature is well below the melting point of the low melting point solid, if the solid has been previously exposed to temperatures near the melting point, the product may have partially melted and “coalesced” into a large agglomerate.
Attempts have been made to address these problems by mixing certain liquid or low melting point solid materials with solid compounds thereby giving such materials an interim solid form so that they will remain solid over a wider temperature range. The resulting product is then added to formulations which call for the liquid or low melting point solid. However, the products that result from such attempts have significant drawbacks. Frequently, the dispersion of the liquid or low melting solid material is not uniform; this results in a wide variability in the concentration of the material within the product. Variability is a particular problem in products which use mineral fillers, such as clay, as a binder component. Where the liquid or low melting point solid is absorbed or adsorbed onto a mineral filler like clay, there is a strong tendency toward particle agglomeration, especially if the product experiences wide temperature variation during transportation and storage. Where a mineral such as clay is mixed into a liquid, the clay tends to settle out before the product fully solidifies, resulting in a stratified product. This stratification produces an uneven concentration of the liquid or low melting point solid throughout the final product. Also, products that have a mineral filler as a binder, present a dispersion problem during the products incorporation into the end formulation, such as into a rubber formulation.
Also, such products frequently have a low “activity”, that is, the product contains a low percentage of the desired liquid or low melting point solid ingredient. A higher activity is desired by the purchasers since first, more of the desired liquid or low melting point solid is available for the money, and, second, since the product will have correspondingly less binder, there are fewer compatibility problems between the binder and the purchaser's formulation which requires the liquid or low melting point solid.
In addition, such products are frequently powdered. Powders may present a respiratory hazard for persons handling the product and may present an explosive hazard as well. Furthermore, many products “bleed”, that is, the liquid ingredient tends to disassociate from the solid component.
It would be desirable to have a liquid or low melting point solid in a solid form, to facilitate handling, measuring and storing, and which can be added directly to the processes which require the liquid or low melting point solid ingredient. It would also be desirable to have a high activity, homogenous product in a non-powdered form. Finally, a product that would fully melt into a formulation, such as a rubber formulation, during processing, eliminating the undispersed solid particles, would be very desirable.
SUMMARY OF INVENTION
The present invention relates to either a liquid compound or a low melting point solid compound, referred to herein as “active ingredients”, uniformly mixed with a binder, to provide a solid composite of high activity and longer shelf life, and also relates to the method of their preparation. The composites provide a temporary form for liquid or low melting point solid ingredients; the composites may be incorporated into a variety of industrial and/or commercial processes in the same way that the active ingredient would be used. The composites may be added to processes which tolerate the addition of the binder. Composites may be made of a variety of active ingredients, such as: organic dialkyl peroxides; modified melamine resins; cyanurates; aldehyde-amines; phenylamines; methacrylates; organo-silanes and organo-phosphites. As used herein “composite” means a solid mixture of an active ingredient and a binder. The “activity” of a particular composite, that is, the percentage of active ingredient in the composite, will depend upon the type of active ingredient. The active ingredient is “composited” by being combined with a thermoplastic binder, which contains a wax, and a thermoplastic polymer. Depending upon the type of active ingredient in the composite, the binder may also contain a compatibilizing agent such as a fatty acid or an ethylene vinyl acetate copolymer resin, or both. Optional minor components, such as wetting agents, stabilizers, plasticizers, homogenizing agents and mineral oils may also be added.
The composite is prepared by blending the active ingredient with the binder preferably while both are in a liquid phase, then cooling the mixture and forming or shaping the composite, using conventional forming procedures.
DETAILED DESCRIPTION OF THE INVENTION
The Active Ingredient
According to the present invention, a variety of liquid and low melting point solid active ingredients are “composited” to produce composites that are easier and safer to handle, easier to measure, have an increased shelf life, and a high activity, that is, a high percentage, in some composites up to 80%, of the active ingredient. The maximum percentage of active ingredient depends on the type of active ingredient. When more than the maximum percent of the active ingredient is present in the composite (and thus, less than minimum binder is present) the composite becomes oily, frosted and/or tacky. This condition is often described as surface bloom. Where the active ingredient is present in the preferred amount, the composite has a high activity without a surface bloom. Where the active ingredient is present in an amount between the preferred amount and the maximum amount, the composite contains some surface bloom but may be satisfactory for some uses. While as little as about 1% active ingredient may be present in the composite, the economic interests dictate that the composite have a higher activity, usually at least 30%.
For organic peroxide, a high activity means the composite will have about 70% to about 80% organic peroxide. For cyanurates, modified melamine resins, organo-silanes, organo-phosphites, and aldehyde-amine reaction products, a high activity means the composite will have about 50% to about 80% active ingredient. For phenylamine based antidegradants and methacrylates, a high activity means the composite will have about 60% to about 80% active ingredient.
Composites may be made of a variety of organic peroxides, for example, dialkyl peroxides, including dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, a,a′-di(t-butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3 and butyl-4,4-bis(t-butylperoxy) valerate. A suitable dicumyl peroxide is sold by Hercules, Inc. under the tradename DICUP R, or by Akzo Chemicals Inc. under the tradename PERKADOX BC. A suitable 2,5-dimethyl-2,5-di(t-butylperoxy)hexane is sold by Akzo Chemicals Inc. under the tradename TRIGONOX 101, or by Atochem under the tradename LUPERSOL 101. A suitable a,a′-di(t-butyl peroxy)diisopropylbenzene is sold by Hercules, Inc. under the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluxed composites does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluxed composites, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluxed composites will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3127473

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.