Valves and valve actuation – Electrically actuated valve – Remote or follow-up control system for electrical actuator
Reexamination Certificate
2002-01-03
2004-10-19
Look, Edward K. (Department: 3754)
Valves and valve actuation
Electrically actuated valve
Remote or follow-up control system for electrical actuator
C004S406000
Reexamination Certificate
active
06805330
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to fluid control switches, and, in particular, to fluid control switches for use in connection with electronically-triggered flow valves and fluid control systems.
2. Brief Description of the Prior Art
In most fluid control systems, and more particularly, water conduit systems, control valves are utilized to control the flow of water through the piping system. Further, in prison lavatory and water closet systems, these control valves are typically used in connection with electronic control centers, which contain sensor inputs to register a user's request for operation of the flow valve. It is these valves, typically solenoid-operated valves, that control the flow of water to the user.
In the area of prison lavatory and water closet systems, conventional manually-operated prison lavatory flow valves, in particular, piston valves, are typically converted to allow for electronic control. Typically, the piston valve is triggered by a user depressing an external button or switch located on the switch housing assembly. Further, the switch is connected to a rod and the rod is connected to a lever on the mechanical valve. It is this mechanical flow valve that controls the flow of fluid, typically water, through the valve, and further through the remaining piping system. When used in connection with a sink, when a user depresses the switch, the rod activates the valve, such that water is allowed to flow through the valve and out of the faucet into the sink. Due to the impurities in potable water, the tiny metering hole associated with the mechanical valve will often clog or be altered in size causing the length of time of fluid flow to be insufficient or the length of time to be further extended, wasting water. In addition, such a mechanical piston flow valve, and control valves associated with these types of flow valves, have numerous and separately functioning pieces. The assembly, maintenance and repair of such a valve having many pieces is difficult, expensive and time consuming.
In order to overcome the deficiencies of using a mechanical flow valve, electronically-controlled flow valves have been developed. In these systems, the external button or switch remains connected to a rod, with the rod activating a switch which is in communication with a communication line which, in turn, is in communication with an external control unit. It is this external control unit that controls a control valve, which controls the flow valve, thereby controlling fluid flow through the flow valve. Such systems, however, still require mechanical operation to activate. Specifically, the user must “push” the button to activate the switch to create the appropriate data signal, which is transmitted to the external control unit. As with the above-described mechanical flow valve, this electronically-controlled flow valve, in particular, the push button-operated switch housing assembly, is subject to mechanical failure and tampering. Additionally, after repeated activation, such a push button assembly begins to “wear” and lose effectiveness, eventually becoming completely inoperable.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to provide a fluid control switch having a minimum number of “pieces,” thereby reducing expense and maintenance costs. It is another object of the present invention to provide a fluid control switch that uses no movable parts, which are subject to wear and tampering. It is a further object of the present invention to provide a fluid control switch that does not require any significant plumbing alterations prior to its installation. It is a further object of the present invention to provide a fluid control switch that is particularly adapted for retrofitting a typical switch housing assembly in a fluid control system.
Accordingly, the present invention is directed to a fluid control switch that includes an adapter element, adapted to be engaged with a switch housing assembly in a fluid control system. The switch housing assembly has a switch orifice surrounded by a switch orifice rim. The adapter element also includes an activation portion, which is in communication with a signal switch. The signal switch creates a data signal when the activation portion is activated. When the adapter element is engaged with the switch housing assembly, the activation portion of the adapter element extends at least flush with the switch orifice rim of the switch housing assembly.
The present invention also includes a method for retrofitting a fluid control switch to a switch housing assembly. The switch housing assembly includes a switch orifice with inner walls having threads disposes thereon and surrounded by a rim. The method includes providing an adapter element having an activation portion in communication with a signal switch, and mating the adapter element with the switch orifice such that the activation portion of the adapter element extends at least flush with the rim of the switch housing assembly. The adapter element may include an outer surface with threads disposed thereon for threaded engagement with the threads on the inner walls of the switch orifice. Alternatively, the adapter element may be mated with a fitting which has a threaded outer surface. In such an embodiment, mating of the adapter element with the switch orifice is accomplished by threading the threads of the fitting with the threads of the switch orifice, such that the activation portion extends at least flush with the rim.
The method may further include receiving an analog data signal from the activation portion of the adapter element, converting the analog data signal to a digital data signal by an analog/digital signal converter and transmitting the digital data signal to an external control unit via a communication line, such as a phone line or a local area network line. The method may further include steps of receiving the digital data signal by the external control unit, transmitting a data signal to a control valve instructing the control valve to allow fluid to flow through a flow valve, and allowing fluid to flow through the flow valve and further through a faucet. The data signal may further be terminated, thereby disallowing further fluid flow.
The present invention is further directed to a kit for a fluid control system including a flow valve in fluid communication with a faucet and a control valve, an external control unit in communication with a control valve, and a fluid control switch having an adapter element configured to be engaged with a switch housing assembly as described herein.
The present invention, both as to its construction and its method of operation, together with the additional objects and advantages thereof will best be understood from the following description of specific embodiments when read in connection with the accompanying drawings.
REFERENCES:
patent: 6018827 (2000-02-01), Shaw et al.
patent: RE37888 (2002-10-01), Cretu-Petra
Fristoe Jr. John K.
I-CON Systems Inc.
Look Edward K.
Webb Ziesenheim & Logsdon Orkin & Hanson, P.C.
LandOfFree
Flush-mount retrofit fluid control switch does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Flush-mount retrofit fluid control switch, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flush-mount retrofit fluid control switch will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3276250